
CLOUD COMPUTING
SAMRAT KRISHNA GADDAM

DR.T.S.RAVI KIRAN,DR.A.SRISAILA

Copyright © Samrat Krishna Gaddam,Dr.T.S.Ravi Kiran,Dr.A.Srisaila

All Rights Reserved.

This book has been self-published with all reasonable efforts taken to make the material
error-free by the author. No part of this book shall be used, reproduced in any manner

whatsoever without written permission from the author, except in the case of brief quotations
embodied in critical articles and reviews.

The Author of this book is solely responsible and liable for its content including but not
limited to the views, representations, descriptions, statements, information, opinions and
references [“Content”]. The Content of this book shall not constitute or be construed or
deemed to reflect the opinion or expression of the Publisher or Editor. Neither the Publisher
nor Editor endorse or approve the Content of this book or guarantee the reliability, accuracy
or completeness of the Content published herein and do not make any representations or

warranties of any kind, express or implied, including but not limited to the implied warranties
of merchantability, fitness for a particular purpose. The Publisher and Editor shall not be liable
whatsoever for any errors, omissions, whether such errors or omissions result from negligence,
accident, or any other cause or claims for loss or damages of any kind, including without
limitation, indirect or consequential loss or damage arising out of use, inability to use, or about
the reliability, accuracy or sufficiency of the information contained in this book.

Made with ❤ on the Notion Press Platform

www.notionpress.com

DEDICATION

TO MY PARENTS AND BROTHER

Foreword

Preface

Acknowledgements

Prologue

1.

Systems Modeling, Clustering And Virtualization

2.

Virtual Machines And Virtualization Of Clusters And Data Centers

3.

Cloud Platform Architecture

4.

Cloud Programming And Software Environments

5.

Storage Systems

Foreword
This book is a timely, comprehensive introduction to cloud computing. The phrase

cloud computing, which was almost never used a decade ago, is now part of the

standard vocabulary. Millions of people around the world use cloud services, and the

numbers are growing rapidly. Even education is being transformed in radical ways by

cloud computing in the form of massive open online courses (MOOCs). This book is

particularly valuable at this time because the phrase cloud computing covers so many

different types of computing services, and the many people participating in

conversations about clouds need to be aware of the space that it spans. The

introductory material in this book explains the key concepts of cloud computing and

is accessible.

Preface
Cloud computing has recently emerged as one of the buzzwords in industry.

Numerous IT vendors are promising to offer computation, storage, and application

hosting services and to provide coverage in several continents, offering service-level

agreements (SLA)-backed performance and uptime promises for their services. While

these "clouds" are the natural evolution of traditional data centers, they are

distinguished by exposing resources (computation, data/storage, and applications) as

standards-based Web services and following a "utility" pricing model where

customers are charged based on their utilization of computational resources, storage,

and transfer of data. They offer subscription-based access to infrastructure, platforms,

and applications that are popularly referred to as IaaS (Infrastructure as a Service),

PaaS (Platform as a Service), and SaaS (Software as a Service). While these emerging

services have increased interoperability and usability and reduced the cost of

computation, application hosting, and content storage and delivery by several orders

of magnitude, there is significant complexity involved in ensuring that applications

and services can scale as needed to achieve consistent and reliable operation under

peak loads.

Currently, expert developers are required to implement cloud services. Cloud

vendors, researchers, and practitioners alike are working to ensure that potential users

are educated about the benefits of cloud computing and the best way .

Acknowledgements
First and foremost, we are grateful to all the contributing authors Dr.T.S.Ravi Kiran

and Dr.A.Srisaila for their time, effort, and understanding during the preparation of

the book. We thank editors of Notion Press book series on parallel and distributed

computing, for his enthusiastic support and guidance during the preparation of book

and enabling us to easily navigate through Notion Press publication process. All

chapters were reviewed and authors have updated their chapters. We thank members

for their time and effort in peer reviewing of chapters. Samrat Krishna would like to

thank his family members, especially Finally, we would like to thank the staff at

Notion Press(Chennai). They were wonderful to work with!

Prologue
An emerging internet based super computing model is represented by cloud

computing. Cloud computing is the convergence and evolution of several concepts

from virtualization, distributed storage, grid, and automation management to enable a

more flexible approach for deploying and scaling applications. However, cloud

computing moves the application software and databases to the large data centers,

where the management of the data and services may not be fully trustworthy. The

concept of cloud computing on the basis of the various definitions available in the

industry and the characteristics of cloud computing are being analyzed in this paper.

The book also describes the main cloud service providers and their products followed

by primary cloud computing operating systems.

CHAPTER ONE

Systems modeling, Clustering and

virtualization

1.1 High Performance Computing (HPC) & High Throughput

Computing (HTC)

High Performance Computing (HPC) is a somewhat ambiguous term.

Supercomputer “…a computer at the frontline of contemporary processing capacity –

particularly speed of calculation.” We consider high performance computing to be

when a large amount of high end resources are required to complete the task in a

reasonable amount of time. By large, we mean dozens, hundreds, or thousands of

CPU’s. By high end resources, we mean the many cores per CPU with dozens or

hundreds of gigabytes of RAM for each CPU. High performance computing tends to

be performed by scientists and researchers in the biotech, geological, and astronomy

spaces. Things like gene sequencing, oil discovery, and weather forecasting.

High Throughput Computing (HTC) is more ambiguous, but more simple, HTC

describes “the use of many computing resources over long periods of time to

accomplish a computational task.” We’d say, high throughput computing is when a

task is so big, it requires a large amount of resources, but those resources can be basic.

You don’t need high end CPU’s with lots of RAM…you just need lots of computers.

Dozens, hundreds, or thousands of computers. High throughput computing tends to

be things like web crawling, where millions of different web sites need to be scrapped

of their data. One computer wouldn’t do this well, but 1,000 basic cloud systems

would make quick work of the task. Another common example is video encoding–

taking a video in one format and converting it into many others. Web sites that host

video have to do this thousands of times each day. Its not a particularly complex

compute task, they just have to do it a bunch of times.

Figure1.1 HPC & HTC

When all is said and done, both HPC and HTC require the power of dozens,

hundreds, and sometimes thousands of computers. Those computers might be physical

(your own datacenter) or virtual (in the cloud). Regardless, CPUsage can help you

quickly and easily consume the power of dozens, hundreds, or thousands of computers

for your high performance or high throughput computing tasks.

1.2 Performance Metrics and Scalability Analysis for virtual

Machines.

VMWare provides the most comprehensive solution for server virtualization today.

ManageEngine Applications Manager provides comprehensive performance metrics

to monitor your VMware ESX/ESXi servers and their guest virtual machines, and

helps you ensure they are performing well at all times. Applications Manager connects

with VMware ESX/ESXi servers through APIs and determines the health status as

well as the performance of host servers and their corresponding virtual machines.

With out-of-the-box reports, graphical views, alarms, thresholds and comprehensive

fault management capabilities, administrators can maximize ESX server uptime and

ensure that the guest virtual machines of the ESX/ESXi servers are running at peak

performance.

Some of the virtual machine metrics provided by Applications Manager

include:Availability, Health & CPU Usage

Monitor the current availability and health status of the virtual machines.

Troubleshoot problems through the Root Cause Analysis (RCA) window. Know what

portion of the ESX Server’s CPU is used by each virtual machine and which virtual

machine is consuming more CPU.

Also identify the hardware details of the ESX Server through hardware monitoring

and minimize server downtimes caused due to a faulty hardware component.

Figure1.2 Availability

Memory Utilization:

Avoid the problem of your virtual machines running out of memory. Get notified

when the memory usage is high or memory becomes dangerously low. Metrics shown

include consumed memory, active memory, overhead memory, shared memory,

granted memory, reserved memory, etc.

Figure1.3 Health & CPU Usage

ManageEngine Applications Manager also provides out-of-the-box reports that help

analyze the overall performance of virtual machines and help in capacity planning.

 Gain insight into the performance of your VMware environment;

troubleshoot and resolve problems before end users are affected.

 Plan capacity and make educated decisions about allocating virtual

machines to host servers.

 Manage both physical and virtual components of your IT infrastructure

using a single console.

 Agentless monitoring solution that is easy to set up and manage.

 Proven solution - Applications Manager was finalist in Best of InterOp

2010, under virtualization category

The VMware monitor is available as an add-on to Applications Manager and is

priced $995/year for up to 25 servers or applications.

1.3 GPU Computing, Exascale & beyond

GPU-Accelerated Computing Goes Mainstream

GPU-accelerated computing has now grown into a mainstream movement supported

by the latest operating systems from Apple (with OpenCL) and Microsoft (using

DirectCompute). The reason for the wide and mainstream acceptance is that the GPU

is a computational powerhouse, and its capabilities are growing faster than those of

the x86 CPU.

In today’s PC, the GPU can now take on many multimedia tasks, such as

accelerating Adobe Flash video, transcoding (translating) video between different

formats, image recognition, virus pattern matching and others. More and more, the

really hard problems to solve are those that have an inherent parallel nature– video

processing, image analysis, signal processing.The combination of a CPU with a GPU

can deliver the best value of system performance, price, and power.

Exascale and Beyond:

As we bump up against the limits of processor speed, memory and energy

consumption, we must rethink every aspect of scientific computing—from hardware

and software, to algorithms, computer center efficiency and networking. The aim is

reducing energy use, while producing more science per Watt.

Scientists and engineers in Berkeley Lab’s Computational Research, National

Energy Research Scientific Computing, Information Technology, and Environmental

Energy Technologies divisions are working together to solve a significant problem

faced by computing centers worldwide: how to engineer, build and operate power-

efficient computers and data centers. Their research examines a wide range of issues,

from creating new computer architectures using low-power processors to innovative

building designs. ESnet researchers are also exploring how to improve the energy

efficiency of national networks.

Since the advent of parallel computing in the early 1990s, supercomputer

performance advanced by adding more processors running at higher speeds to the

system. Once the performance of processors leveled off around 2006, systems

designers turned to packing each chip with more cores. That was enough to achieve

petaflop/s-level performance, but extending this approach to the next step—exascale

computing—would be so energy intensive that no center could afford the 200

megawatts needed to power such a system each year.

To get beyond the current limitations of chip performance and energy demands,

entirely new architectures will be needed and the Berkeley Lab Computing Sciences

organization is looking for solutions. It may help to view the exascale problem as one

of continuing to improve computing performance, rather than focusing solely on how

to build the biggest supercomputer that we can. It’s critical to start by creating the

basic building blocks of such a system, but to create them in such a way that they can

be assembled to scale to exaflops. This is no easy task, as the building blocks are

systems of processors, memory system, storage systems, networking systems and

more. Then there is the operating and software needed to make the system useful.

1.4 Massive Parallel Processors.

In the ever-changing landscape of information technology, data being collected and

combed through for business intelligence purposes has reached excessive levels.

Welcome to the big data revolution. In order for modern-day systems to keep up and

process all this information in a timely manner, new technologies have been

developed and old ones have been improved on. Massively parallel processing, or

MPP, is such a technology. It deals with the coordinated processing of large datasets

using multiple processors. This enables very fast rates of execution for intricate

queries running against large data warehouses. The main reason this technology came

about is because of the vast quantities of data that were inundating applications not

designed for such massive volumes. The need to process this data for the purposes of

analytics encouraged designers to develop ultra-fast processing techniques.

Without the techniques MPP employs, a query may take a very long time to

complete, making modern business intelligence systems and data warehouses less

than useful. Massively parallel processing is at the heart of many different types of

big data solutions, and has made substantial inroads as an important technology.

Amazon Redshift, the popular cloud-based data warehousing solution, uses MPP

architecture to achieve extremely fast query execution. MPP is one of the five key

performance enablers of Redshift, along with columnar data storage, data

compression, query optimization, and compiled code.

How MPP Works:

What MPP does is fairly simple in theory. It breaks up large, difficult to manage

datasets into easily workable chunks, assigning each to a processor. There could be as

many as hundreds or even thousands of processors working on chunks from the same

dataset. Once all the data has been processed, results from the many different

processors are combined for a final result set. How MPP actually achieves this is

through a messaging interface the individual processors use to communicate with each

other. Each processor has its own operating system and memory. This allows each

one to work independently, on its assigned segment of the database, while loosely

communicating with the other processors. It is for this reason that MPP systems are

known as a “shared nothing” system. Since OS, memory, disk or anything else is not

being shared among the individual nodes in a shared nothing architecture, possibilities

and advantages for fine-tuning the system can be realized. The MPP system can be

scaled to as many additional nodes as needed, dividing the work further and speeding

up the system to optimum levels. Also, since the processor of each node operates

independently of the others, there is no bottleneck to hinder performance.

Strengths and Weaknesses of MPP:

An MPP data warehouse has a multitude of advantages when considering the

challenges that come along with the efficient extrapolation of big data analytics.

However, it is not the right technology for every situation.

 Strengths: In addition to the advantages outlined above, data warehouses

that employ MPP are equipped with an optimization mechanism that monitors the

flow of data to the individual nodes. This makes them faster and more efficient than

similar technologies. Also, MPP is cost effective, supports SQL-based business

intelligence tools, and is generally easy to deploy, maintain, and use compared to

competing technologies.

 Weaknesses: Even though MPP is a high-performance technology, it does

have some drawbacks. One such weakness is the fact that unstructured data requires

a bit of preprocessing. Unstructured data refers to data that does not have a predefined

organization, but its analysis is still considered to be of value in identifying trends and

patterns for business intelligence purposes. However, this does not suggest that MPP

cannot make use of unstructured data efficiently. It just uses a slightly different

approach.

 MPP vs. MapReduce:Massively parallel processing is not the only

technology available to facilitate the processing of large volumes of data. MapReduce,

a part of the Apache Hadoop Project, is another technology that accomplishes the

same things MPP does, but with some differences. As a matter of fact, you might even

say MPP and MapReduce are distant cousins. At first glance, technological

differences between the two may not seem too far apart, but depending on the needs

of your data warehouse, choosing one over the other could have a huge impact.

 Performance: The optimization and distribution components of MPP

allow it to manage the distribution of data among the separate nodes. This speeds up

processing time considerably, making it a better performance choice over

MapReduce. Also, MPP databases conform to the ACID compliance which stands for

atomicity, consistency, isolation, and durability. ACID ensures database transactions

are processed accurately and reliably. This is not something that is automatically

enforced in Hadoop, giving MPP the overall performance edge over MapReduce.

 Scaling: The highly specialized hardware used by MPP systems make

scalability a difficult and costly proposition. MapReduce and Hadoop, however, can

be deployed to inexpensive commodity servers, allowing the clusters of nodes to grow

as needed.

 Deployment and Maintenance: MPP is generally easy to deploy and

maintain. Hadoop and MapReduce, on the other hand, can turn out to be a major

implementation project requiring expensive and specialized expertise that may not be

available in-house.

 Data Restrictions: Unlike MPP, Hadoop and MapReduce can handle

unstructured data without the need to preprocess it. There is no need to massage the

data before it can be used. The slight advantage here goes to MapReduce.

 Language: The language behind MapReduce’s control mechanism is

primarily Java. MPP uses SQL, making it easier to use and more cost effective. SQL

is a well-known query language, generally used by database professionals, eliminating

the need to hire costly Hadoop experts. Also, existing SQL-based business

intelligence tools are supported with MPP. This is not the case with MapReduce, and

alternative solutions must be explored.

 Is MPP better than MapReduce or vice versa? That is a question that

depends on what each organization wants to accomplish, for they are different tools

that suit different situations. As a matter of fact, there are some organizations that use

both MPP and MapReduce, affording them the luxury of the best of both worlds.

1.5 Degrees of Parallelisms.

Fifty years ago, when hardware was bulky and expensive, most computers were

designed

in a bit-serial fashion. In this scenario, bit-level parallelism (BLP) converts bit-serial

processing to word- level processing gradually. Over the years, users graduated from

4-bit microprocessors to 8-, 16-, 32-, and

64-bit CPUs. This led us to the next wave of improvement, known as instruction-

level parallelism (ILP), in which the processor executes multiple instructions

simultaneously rather than only one instruction at a time.

For the past 30 years, we have practiced ILP through pipelining, superscalar

computing, VLIW (very long instruction word) architectures, and multithreading. ILP

requires branch prediction, dynamic scheduling, speculation, and compiler support to

work efficiently. Data-level parallelism (DLP) was made popular through SIMD

(single instruction, multiple data) and vector machines using vector or array types of

instructions. DLP requires even more hardware support and compiler assistance to

work properly. Ever since the introduction of multicore processors and chip

multiprocessors (CMPs), we have been exploring task-level parallelism (TLP). A

modern processor explores all of the aforementioned parallelism types. In fact, BLP,

ILP, and DLP are well supported by advances in hardware and compilers. However,

TLP is far from being very successful due to difficulty in programming and

compilation of code for efficient execution on multicore CMPs. As we move from

parallel processing to distributed processing, we will see an increase in computing

granularity to job-level parallelism (JLP). It is fair to say that coarsegrain parallelism

is built on top of fine-grain parallelism.

1.6 Computing Paradigms

Deployment Models The Cloud model promotes four deployment models:

 Private Cloud: The Cloud infrastructure is operated solely for an

organization. It may be managed by the organization or a third party and may exist on

premise or off premise.

 Community Cloud: The Cloud infrastructure is shared by several

organizations and supports a specific community that has shared concerns (e.g.,

mission, security requirements, policy, and compliance considerations). It may be

managed by the organizations or a third party and may exist on premise or off premise.

 Public Cloud: The Cloud infrastructure is made available to the general

public or a large industry group and is owned by an organization selling Cloud

services.

 Hybrid Cloud: The Cloud infrastructure is a composition of two or more

Clouds (private, community, or public) that remain unique entities but are bound

together by standardized or proprietary technology that enables data and application

portability (e.g., Cloud bursting for load-balancing between Clouds).

 Service Models Cloud Computing is gaining popularity to the extent that

the new XaaS service category introduced will gradually take the place of many types

of computational and storage resources used today . Cloud Computing delivers

infrastructure, platform, and software (application) as services, which are made

available as subscription-based services in a pay-as-you-go model to consumers.

These services in industry are respectively referred to as Infrastructure-as-a-Service

(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) .

Infrastructure-as-a-Service Infrastructure-as-a-Service, also called Hardware-as-a-

Service was coined possibly in 2006. As the result of rapid advances in hardware

virtualization, IT automation and usage metering& pricing, users could buy IT

hardware, or even an entire data center, as a pay-as-you-go subscription service.

 Infrastructure-as-a-Service Cloud Computing: Paradigms and

Technologies 49 (IaaS) or Hardware-as-a-Service (HaaS) solutions deliver IT

infrastructure based on virtual or physical resources as a commodity to customers.

These resources meet the end user requirements in terms of memory, CPU type and

power, storage, and, in most of the cases, operating system as well. Users are billed

on a pay-peruse basis. They have to set up their applications on top of these resources

that are hosted and managed in data centers owned by the vendor. Amazon is one of

the major players in providing IaaS solutions.

 Amazon Elastic Compute Cloud (EC2) provides a large computing

infrastructure and a service based on hardware virtualization. By using Amazon Web

Services, users can create Amazon Machine Images (AMIs) and save them as

templates from which multiple instances can be run. It is possible to run either

Windows or Linux virtual machines, for which the user is charged per hour for each

of the instances running. Amazon also provides storage services with the Amazon

Simple Storage Service (S3), users can use Amazon S3 to host large amount of data

accessible from anywhere .

 Platform-as-a-Service Platform-as-a-Service solutions provide an

application or development platform in which users can create their own application

that will run on the Cloud. More precisely, they provide an application framework and

a set of API that can be used by developers to program or compose applications for

the Cloud. PaaS solutions often integrate an IT infrastructure on top of which

applications will be executed. This is the case of Google AppEngine and Microsoft

Azure, while other solutions, such as Manjrasoft Aneka, are purely PaaS

implementations. Cloud computing services classification Category Characteristics

Product type Vendors and products SaaS Customers are provided with applications

that are accessible anytime and from anywhere Web applications and services (Web

2.0)

 SalesForce.com (CRM) Google documents Clarizen.com (Project

management) Google mail (automation) PaaS Customers are provided with a platform

for developing applications hosted in the Cloud Programming APIs and frameworks;

Deployment system Google AppEngine Microsoft Azure Manjrasoft Aneka IaaS/

HaaS Customers are provided with virtualized hardware and storage on top of which

they can build their infrastructure Virtual machines management infrastructure,

Storage management Amazon EC2 and S3; GoGrid; Nirvanix 50 A. Shawish and M.

Salama Google AppEngine is a platform for developing scalable web applications that

run on top of data centers maintained by Google.

 It defines an application model and provides a set of APIs that allow

developers to take advantage of additional services such as Mail, Datastore,

Memcache, and others. AppEngine manages the execution of applications and

automatically scales them up/down as required. Google provides a free but limited

service, while utilizes daily and per minute quotas to meter and price applications

requiring a professional service. Azure is a Cloud service operating system that serves

as the development, runtime, and control environment for the Azure Services Platform

 By using the Microsoft Azure SDK, developers can create services that

leverage the .NET Framework. These services have to be uploaded through the

Microsoft Azure portal in order to be executed on top of Windows Azure. Additional

services, such as workflow execution and management, web services orchestration,

and access to SQL data stores, are provided to build enterprise applications. Aneka,

commercialized by Manjrasoft, is a pure PaaS implementation and provides end users

and developers with a platform for developing distributed applications for the Cloud

by using .NET technology. The core value of Aneka is a service oriented runtime

environment that is deployed on both physical and virtual infrastructures and allows

the execution of applications developed by means of various programming models.

 Aneka provides a Software Development Kit (SDK) helping developers to

create applications and a set of tools for setting up and deploying Clouds on Windows

and Linux based systems. Aneka does not provide an IT hardware infrastructure to

build computing Clouds, but system administrators can easily set up Aneka Clouds

by deploying Aneka containers on clusters, data centers, desktop PCs, or even bundled

within Amazon Machine Images.

 Software-as-a-Service Software or an application is hosted as a service and

provided to customers across the Internet. This mode eliminates the need to install and

run the application on the customer’s local computers. SaaS therefore alleviates the

customer’s burden of software maintenance, and reduces the expense of software

purchases. Software-as-a-Service solutions are at the top end of the Cloud Computing

stack and they provide end users with an integrated service comprising hardware,

development platforms, and applications. Users are not allowed to customize the

service but get access to a specific application hosted in the Cloud.

 Examples of SaaS implementations are the services provided by Google

for office automation, such as Google Mail, Google Documents, and Google

Calendar, which are delivered for free to the Internet users and charged for

professional quality services.

 Examples of commercial solutions are SalesForce.com and Clarizen.com,

which provide online CRM (Customer Relationship Management) and project

management services, respectively. Cloud Computing: Paradigms and

Technologies.Data-as-a-Service Data in various formats and from multiple sources

could be accessed via services by users on the network. Users could, for example,

manipulate the remote data just like operate on a local disk or access the data in a

semantic way in the Internet.

 Amazon Simple Storage Service (S3) provides a simple Web services

interface that can be used to store and retrieve, declared by Amazon, any amount of

data, at any time, from anywhere on the Web. The DaaS could also be found at some

popular IT services, e.g., Google Docs and Adobe Buzzword. ElasticDrive is a

distributed remote storage application which allows users to mount a remote storage

resource such as Amazon S3 as a local storage device.

1.7 System Models for Distributed and Cloud Computing

System models are classified into four groups: clusters, P2P networks, computing

grids, and Internet clouds over huge data centers. Cluster Architecture A computing

cluster consists of interconnected stand-alone computers which work cooperatively as

a single integrated computing resource. Figure shows the architecture of a typical

server cluster built around a low-latency, high bandwidth interconnection network.

This network can be as simple as a SAN (e.g., Myrinet) or a LAN (e.g., Ethernet).

Figure1.4 Cluster

The gateway IP address locates the cluster. Most clusters have loosely coupled node

computers. Single-System Image Ideal cluster should merge multiple system images

into a single-system image (SSI). Cluster designers desire a cluster operating system

or some middleware to support SSI at various levels, including the sharing of CPUs,

memory, and I/O across all cluster nodes. An SSI is an illusion created by software or

hardware that presents a collection of resources as one integrated,powerful resource.

A cluster with multiple system images is nothing but a collection of independent

computers. Hardware, Software, and Middleware Support The building blocks are

computer nodes (PCs, workstations, servers, or SMP), special communication

software such as PVM or MPI, and a network interface card in each computer node.

Special cluster middleware supports are needed to create SSI or high availability

(HA). Both sequential and parallel applications can run on the cluster, and special

parallel environments are needed to facilitate use of the cluster resources. Many SSI

features are expensive or difficult to achieve at various cluster operational levels.

Instead of achieving SSI, many clusters are loosely coupled machines. Major Cluster

Design Issues scalable performance efficient message passing, high system

availability seamless fault tolerance cluster-wide job management Computational

Grids.

Figure1.5 Grid

A computing grid offers an infrastructure that couples computers,

software/middleware, special instruments, and people and sensors together. The grid

is often constructed across LAN, WAN, or Internet backbone networks at a regional,

national, or global scale. The computers used in a grid are primarily workstations,

servers, clusters, and supercomputers. Personal computers, laptops, and PDAs can be

used as access devices to a grid system. Figure shows an example computational grid

built over multiple resource sites owned by different organizations. The grid is built

across various IP broadband networks including LANs and WANs already used by

enterprises or organizations over the Internet. The grid is presented to users as

integrated resources pool as shown in the upper half of the figure.

The grid integrates the computing, communication, contents, and transactions as

rented services. Peer-to-Peer Network The P2P architecture offers a distributed model

of networked systems. A P2P network is client-oriented instead of server-oriented. In

this system, every node acts as both a client and a server, providing part of the system

resources. Peer machines are simply client computers connected to the Internet. All

client machines act autonomously to join or leave the system freely.

This implies that no master-slave relationship exists among the peers. No central

coordination or central database is needed. The architecture of a P2P network at two

abstraction levels is shown in the figure. Initially, the peers are totally unrelated. Each

peer machine joins or leaves the P2P network voluntarily. Only the participating peers

form the physical network at any time.

Figure1.6 P2P

Unlike the cluster or grid, a P2P network does not use a dedicated interconnection

network. The physical network is simply an ad hoc network formed at various Internet

domains randomly using the TCP/IP and NAI protocols. Overlay Networks Based on

communication or file-sharing needs, the peer IDs form an overlay network at the

logical level. This overlay is a virtual network formed by mapping each physical

machine with its ID, logically, through a virtual mapping as shown in Figure. Based

on communication or file-sharing needs, the peer IDs form an overlay network at the

logical level. There are two types of overlay networks: An unstructured overlay

network is characterized by a random graph. There is no fixed route to send messages

or files among the nodes.

Often, flooding is applied to send a query to all nodes in an unstructured overlay,

thus resulting in heavy network traffic and nondeterministic search results. Structured

overlay networks follow certain connectivity topology and rules for inserting and

removing nodes (peer IDs) from the overlay graph.Routing mechanisms are

developed to take advantage of the structured overlays. P2P networks are classified

into four groups: The first family is for distributed file sharing of digital contents

(music, videos, etc.) on the P2P network.

Collaboration P2P networks include MSN or Skype chatting, instant messaging, and

collaborative design, among others. The third family is for distributed P2P computing

in specific applications. Other P2P platforms, such as JXTA, .NET, and

FightingAID@home, support naming, discovery, communication, security, and

resource aggregation in some P2P applications. Computing challenges in P2P There

are three types of heterogeneity problems in hardware, software, and network

requirements. There are too many hardware models and architectures to select from;

incompatibility exists between software and the OS; and different network

connections and protocols make it too complex to apply in real applications. We need

system scalability as the workload increases. System scaling is directly related to

performance and bandwidth. P2P networks do have these properties.

Data location is also important to affect collective performance. Data locality,

network proximity, and interoperability are three design objectives in distributed P2P

applications. P2P performance is affected by routing efficiency and selforganization

by participating peers. Fault tolerance, failure management, and load balancing are

other important issues in using overlay networks. Lack of trust among peers poses

another problem. The system is not centralized, managing it is difficult.

In addition, the system lacks security. Anyone can log on to the system and cause

damage or abuse. In summary, P2P networks are reliable for a small number of peer

nodes. They are only useful for applications that require a low level of security and

have no concern for data sensitivity.

1.8 SOA with Applications

A service-oriented architecture is essentially a collection of services. These services

communicate with each other. The communication can involve either simple data

passing or it could involve two or more services coordinating some activity. Some

means of connecting services to each other is needed.

Service-oriented architectures are not a new thing. The first service-oriented

architecture for many people in the past was with the use DCOM or Object Request

Brokers (ORBs) based on the CORBA specification.

Figure1.7 Service Oriented Architecture

Services:If a service-oriented architecture is to be effective, we need a clear

understanding of the term service. A service is a function that is well-defined, self-

contained, and does not depend on the context or state of other services.

Connections:The technology of Web Services is the most likely connection

technology of service-oriented architectures. The following figure illustrates a basic

service-oriented architecture. It shows a service consumer at the right sending a

service request message to a service provider at the left. The service provider returns

a response message to the service consumer. The request and subsequent response

connections are defined in some way that is understandable to both the service

consumer and service provider. How those connections are defined is explained in

Web Services Explained. A service provider can also be a service consumer.

CHAPTER TWO

Virtual Machines and

Virtualization of Clusters and Data

Centers
2.1Implementation Levels of Virtualization

Virtualization is a computer architecture technology by which multiple virtual

machines (VMs) are multiplexed in the same hardware machine. The idea of VMs can

be dated back to the 1960s [53]. The purpose of a VM is to enhance resource sharing

by many users and improve computer performance in terms of resource utilization and

application flexibility. Hardware resources (CPU, memory, I/O devices, etc.) or

software resources (operating system and software libraries) can be virtualized in

various functional layers. This virtualization technology has been revitalized as the

demand for distributed and cloud computing increased sharply in recent years.

1. Levels of Virtualization Implementation

A traditional computer runs with a host operating system specially tailored for its

hardware architecture, as shown in Figure 2.1. After virtualization, different user

applications managed by their own operating systems (guest OS) can run on the same

hardware, independent of the host OS. This is often done by adding additional

software, called a virtualization layer as shown in Figure 2.2. This virtualization layer

is known as hypervisor or virtual machine monitor (VMM). The VMs are shown in

the upper boxes, where applications run with their own guest OS over the virtualized

CPU, memory, and I/O resources.

Figure 2.1 Traditional COmputer & After Virtualization

2.1.1 Instruction Set Architecture Level

At the ISA level, virtualization is performed by emulating a given ISA by the ISA

of the host machine. For example, MIPS binary code can run on an x86-based host

machine with the help of ISA emulation. With this approach, it is possible to run a

large amount of legacy binary code writ-ten for various processors on any given new

hardware host machine. Instruction set emulation leads to virtual ISAs created on any

hardware machine.

The basic emulation method is through code interpretation. An interpreter program

interprets the source instructions to target instructions one by one. One source

instruction may require tens or hundreds of native target instructions to perform its

function. Obviously, this process is relatively slow. For better performance,dynamic

binary translation is desired. This approach translates basic blocks of dynamic source

instructions to target instructions. The basic blocks can also be extended to program

traces or super blocks to increase translation efficiency. Instruction set emulation

requires binary translation and optimization. Avirtual instruction set architecture (V-

ISA) thus requires adding a processor-specific software translation layer to the

compiler.

Figure 2.2 Virtualization Levels of Acstraction

1.

1. Hardware Abstraction Level

Hardware-level virtualization is performed right on top of the bare hardware. On the

one hand, this approach generates a virtual hardware environment for a VM. On the

other hand, the process manages the underlying hardware through virtualization. The

idea is to virtualize a computer’s resources, such as

its processors, memory, and I/O devices. The intention is to upgrade the hardware

utilization rate by multiple users concurrently. The idea was implemented in the IBM

VM/370 in the 1960s. More recently, the Xen hypervisor has been applied to virtualize

x86-based machines to run Linux or other guest OS applications.

1.

2. Operating System Level

This refers to an abstraction layer between traditional OS and user applications. OS-

level virtualiza-tion creates isolated containers on a single physical server and the OS

instances to utilize the hard-ware and software in data centers. The containers behave

like real servers. OS-level virtualization is commonly used in creating virtual hosting

environments to allocate hardware resources among a large number of mutually

distrusting users.

1.

3. Library Support Level

Most applications use APIs exported by user-level libraries rather than using lengthy

system calls by the OS. Since most systems provide well-documented APIs, such an

interface becomes another candidate for virtualization. Virtualization with library

interfaces is possible by controlling the communication link between applications and

the rest of a system through API hooks. The software tool WINE has implemented

this approach to support Windows applications on top of UNIX hosts. Another

example is the vCUDA which allows applications executing within VMs to leverage

GPU hardware acceleration.

1.

4. User-Application Level

Virtualization at the application level virtualizes an application as a VM. On a

traditional OS, an application often runs as a process. Therefore, application-level

virtualization is also known as process-level virtualization. The most popular

approach is to deploy high level language (HLL)

VMs. In this scenario, the virtualization layer sits as an application program on top

of the operating system, and the layer exports an abstraction of a VM that can run

programs written and compiled to a particular abstract machine definition. Any

program written in the HLL and compiled for this VM will be able to run on it. The

Microsoft .NET CLR and Java Virtual Machine (JVM) are two good examples of this

class of VM.

Other forms of application-level virtualization are known as application isolation,

applicationsandboxing, or application streaming. The process involves wrapping the

application in a layer that is isolated from the host OS and other applications. The

result is an application that is much easier to distribute and remove from user

workstations. An example is the LANDesk application virtuali-zation platform which

deploys software applications as self-contained, executable files in an isolated

environment without requiring installation, system modifications, or elevated security

privileges.

1.

5. Relative Merits of Different Approaches

“Higher Performance” and “Application Flexibility” are self- explanatory.

“Implementation Complexity” implies the cost to implement that particular vir-

tualization level.“Application Isolation” refers to the effort required to isolate

resources committed to different VMs. Each row corresponds to a particular level of

virtualization.

The number of X’s in the table cells reflects the advantage points of each

implementation level. Five X’s implies the best case and one X implies the worst case.

Overall, hardware and OS support will yield the highest performance. However, the

hardware and application levels are also the most expensive to implement. User

isolation is the most difficult to achieve. ISA implementation offers the best

application flexibility.

2.2VMM Design Requirements and Providers

Hardware-level virtualization inserts a layer between real hardware and tradi-tional

operating systems. This layer is commonly called the Virtual Machine Monitor

(VMM) and it manages the hardware resources of a computing system. Each time

programs access the hardware the VMM captures the process. In this sense, the VMM

acts as a traditional OS. One hardware compo-nent, such as the CPU, can be

virtualized as several virtual copies. Therefore, several traditional operating systems

which are the same or different can sit on the same set of hardware simultaneously.

Figure 2.3 Merits of Virtualization at various levels

There are three requirements for a VMM. First, a VMM should provide an

environment for pro-grams which is essentially identical to the original machine.

Second, programs run in this environment should show, at worst, only minor

decreases in speed. Third, a VMM should be in complete control of the system

resources. Any program run under a VMM should exhibit a function identical to that

which it runs on the original machine directly. Two possible exceptions in terms of

differences are permitted with thisrequirement: differences caused by the availability

of system resources and differences caused by timing dependencies. The former arises

when more than one VM is running on the same machine.

The hardware resource requirements, such as memory, of each VM are reduced, but

the sum of them is greater than that of the real machine installed. The latter

qualification is required because of the intervening level of software and the effect of

any other VMs concurrently existing on the same hardware. Obviously, these two

differences pertain to performance, while the function a VMM pro-vides stays the

same as that of a real machine. However, the identical environment requirement

excludes the behavior of the usual time-sharing operating system from being classed

as a VMM.

Figure 2.4 Comparision of four VMM and Hypervisor Software Packages

A VMM should demonstrate efficiency in using the VMs. Compared with a physical

machine, no one prefers a VMM if its efficiency is too low. Traditional emulators and

complete software interpreters (simulators) emulate each instruction by means of

functions or macros. Such a method provides the most flexible solutions for VMMs.

However, emulators or simulators are too slow to be used as real machines. To

guarantee the efficiency of a VMM, a statistically dominant subset of the virtual

processor’s instructions needs to be executed directly by the real processor, with no

software intervention by the VMM.

Complete control of these resources by a VMM includes the following aspects: (1)

The VMM is responsible for allocating hardware resources for programs; (2) it is not

possible for a program to access any resource not explicitly allocated to it; and (3) it

is possible under certain circumstances for a VMM to regain control of resources

already allocated. Not all processors satisfy these require-ments for a VMM. A VMM

is tightly related to the architectures of processors.

It is difficult to implement a VMM for some types of processors, such as the x86.

Specific limitations include the inability to trap on some privileged instructions. If a

processor is not designed to support virtualization primarily, it is necessary to modify

the hardware to satisfy the three requirements for a VMM. This is known as hardware-

assisted virtualization.

2.3 XEN Architecture

Xen is a type 1 hypervisor that creates logical pools of system resources so that

many virtual machines can share the same physical resources.

Xen is a hypervisor that runs directly on the system hardware. Xen inserts a

virtualization layer between the system hardware and the virtual machines, turning

the system hardware into a pool of logical computing resources that Xen can

dynamically allocate to any guest operating system. The operating systems running in

virtual machines interact with the virtual resources as if they were physical resources.

Figure 2.5 XEN Architecture

Xen is running three virtual machines. Each virtual machine is running a guest

operating system and applications independent of other virtual machines while

sharing the same physical resources.

Features:

The following are key concepts of the Xen architecture:

 Full virtualization.

 Xen can run multiple guest OS, each in its on VM.

 Instead of a driver, lots of great stuff happens in the Xen daemon, xend.

Full virtualization

Most hypervisors are based on full virtualization which means that they completely

emulate all hardware devices to the virtual machines. Guest operating systems do not

require any modification and behave as if they each have exclusive access to the entire

system.

Full virtualization often includes performance drawbacks because complete

emulation usually demands more processing resources (and more overhead) from the

hypervisor. Xen is based on paravirtualization; it requires that the guest operating

systems be modified to support the Xen operating environment. However, the user

space applications and libraries do not require modification.

Operating system modifications are necessary for reasons like:

 So that Xen can replace the operating system as the most privileged

software.

 So that Xen can use more efficient interfaces (such as virtual block devices

and virtual network interfaces) to emulate devices — this increases performance.

Xen can run multiple guest OS each in its on VM

Xen can run several guest operating systems each running in its own virtual machine

or domain. When Xen is first installed, it automatically creates the first domain,

Domain 0 (or dom0).

Domain 0 is the management domain and is responsible for managing the system. It

performs tasks like building additional domains (or virtual machines), managing the

virtual devices for each virtual machine, suspending virtual machines, resuming

virtual machines, and migrating virtual machines. Domain 0 runs a guest operating

system and is responsible for the hardware devices.

Instead of a driver, lots of great stuff happens in the Xen daemon

The Xen daemon, xend, is a Python program that runs in dom0. It is the central point

of control for managing virtual resources across all the virtual machines running on

the Xen hypervisor. Most of the command parsing, validation, and sequencing

happens in user space in xend and not in a driver.

IBM supports the SUSE Linux Enterprise Edition (SLES) 10 version of Xen which

supports the following configuration:

 Four virtual machines per processor and up to 64 virtual machines per

physical system.

 SLES 10 guest operating systems (paravirtualized only). Deploying

virtualization.

2.4 Full Virtualization and Para Virtualization

Full virtualization:

Full virtualization is a common and cost-effective type of virtualization, which is

basically a method by which computer service requests are separated from the

physical hardware that facilitates them. With full virtualization, operating systems and

their hosted software are run on top of virtual hardware. It differs from other forms of

virtualization (like paravirtualization and hardware-assisted virtualization) in its total

isolation of guest operating systems from their hosts.

A private company called VMware developed a method to virtualize the x86

platform in 1998, which was previously believed to be impossible. The technology

allowed multiple guest operating systems to run on a single host OS in full isolation

using a combination of direct execution and binary translation. This was the first

implementation of full virtualization, but certain inefficiencies have led to the

development of other virtualization methods. These other methods include

paravirtualization (which facilitates communication between the guest OS and the

hypervisor in order to improve performance) and hardware-assisted virtualization

(which gives virtual systems direct access to the hosting hardware, rather than merely

its overlying software).

Figure 2.6 Full Virtualization

Para virtualization:

The modification of the source code of an operating system in order to run as a guest

operating system in a specific virtual machine environment. Calls to the hardware

from the guest OS are replaced with calls to the virtual machine monitor (VMM). For

example, several operating systems, such as Linux, OpenBSD, FreeBSD and

OpenSolaris, have been paravirtualized for the Xen virtual machine monitor.

Figure 2.7 Para Virtualization

Paravirtualization Vs Emulation:

The guest OS can run as is without modification if the VMM emulates the hardware.

In this case, the calls from the guest OS drivers to the hardware are intercepted and

managed by the VMM, which redirects them to the real drivers. In addition, calls from

the guest OS to the virtual memory page tables are intercepted and managed by the

VMM. Emulation enables any guest OS to run intact, but emulation is slower than if

the guest OS were paravirtualized.

Paravirtualization may be an option. If support for virtual machines is present in the

CPU hardware, the guest OS may not need modification. For example, prior to the

virtualization circuits built into x86 CPUs, the Xen VMM required the guest OS to be

modified. If Xen runs in later Intel VT or AMD-V CPUs, a guest OS can run as is.

See virtual machine monitor, virtual machine, hardware virtualization and Xen.

https://www.pcmag.com/encyclopedia/term/55827/virtual-machine-monitor
https://www.pcmag.com/encyclopedia/term/53927/virtual-machine
https://www.pcmag.com/encyclopedia/term/44120/hardware-virtualization
https://www.pcmag.com/encyclopedia/term/55876/xen

Figure 2.8 Architectural Comparision

Emulated Hardware:

Just like running in a non-virtualized computer, a non-paravirtualized guest OS

communicates with the hardware as usual. The VMM presents a "device model" to

the guest OS, which emulates the hardware. In these illustrations and the one

following, the emphasis is on the device drivers. Paravirtualization also refers to

modifying the calls to the virtual memory tables.

Paravirtualized Guests:

In a paravirtualized OS, the drivers are replaced with calls to the VMM interface.

This example shows one VMM model.

2.5 Memory Virtualization

Virtual memory virtualization is similar to the virtual memory support provided by

modern operating systems. In a traditional execution environment, the operating

system maintains mappings of virtual memory to machine memory using page tables,

which is a one-stage mapping from virtual memory to machine memory. All modern

x86 CPUs include a memory management unit (MMU) and a translation lookaside

buffer (TLB) to optimize virtual memory performance. However, in a virtual

execution environment, virtual memory virtualization involves sharing the physical

system memory in RAM and dynamically allocating it to the physical memory of the

VMs.

That means a two-stage mapping process should be maintained by the guest OS and

the VMM, respectively: virtual memory to physical memory and physical memory to

machine memory. Furthermore, MMU virtualization should be supported, which is

transparent to the guest OS. The guest OS continues to control the mapping of virtual

addresses to the physical memory addresses of VMs. But the guest OS cannot directly

access the actual machine memory. The VMM is responsible for mapping the guest

physical memory to the actual machine memory.

Figure 2.9 Two Level Memory Mapping Procedure

Since each page table of the guest OSes has a separate page table in the VMM

corresponding to it, the VMM page table is called the shadow page table. Nested page

tables add another layer of indirection to virtual memory. The MMU already handles

virtual-to-physical translations as defined by the OS. Then the physical memory

addresses are translated to machine addresses using another set of page tables defined

by the hypervisor. Since modern operating systems maintain a set of page tables for

every process, the shadow page tables will get flooded. Consequently, the perfor-

mance overhead and cost of memory will be very high.

VMware uses shadow page tables to perform virtual-memory-to-machine-memory

address translation. Processors use TLB hardware to map the virtual memory directly

to the machine memory to avoid the two levels of translation on every access. When

the guest OS changes the virtual memory to a physicalmemory mapping, the VMM

updates the shadow page tables to enable a direct lookup. The AMD Barcelona

processor has featured hardware-assisted memory virtualization since 2007. It

provides hardware assistance to the two-stage address translation in a virtual

execution environment by using a technology called nested paging.

Extended Page Table by Intel for Memory Virtualization:

Since the efficiency of the software shadow page table technique was too low, Intel

developed a hardware-based EPT technique to improve it, as illustrated in Figure 3.13.

In addition, Intel offers a Virtual Processor ID (VPID) to improve use of the TLB.

Therefore, the performance of memory virtualization is greatly improved.

When a virtual address needs to be translated, the CPU will first look for the L4

page table pointed to by Guest CR3. Since the address in Guest CR3 is a physical

address in the guest OS, the CPU needs to convert the Guest CR3 GPA to the host

physical address (HPA) using EPT. In this procedure, the CPU will check the EPT

TLB to see if the translation is there. If there is no required translation in the EPT

TLB, the CPU will look for it in the EPT. If the CPU cannot find the translation in the

EPT, an EPT violation exception will be raised.

Figure 2.10 Two Level Memory Mapping Procedure

If the entry corresponding to the GVA in the L4 page table is a page fault, the CPU

will generate a page fault interrupt and will let the guest OS kernel handle the

interrupt. When the PGA of the L3 page table is obtained, the CPU will look for the

EPT to get the HPA of the L3 page table, as described earlier. To get the HPA

corresponding to a GVA, the CPU needs to look for the EPT five times, and each time,

the memory needs to be accessed four times. There-fore, there are 20 memory

accesses in the worst case, which is still very slow. To overcome this short-coming,

Intel increased the size of the EPT TLB to decrease the number of memory accesses.

2.6 Implementation Levels of Virtualization

Implementation Levels of Virtualization Virtualization is a computer architecture

technology by which multiple virtual machines (VMs) are multiplexed in the same

hardware machine. The purpose of a VM is to enhance resource sharing by many users

and improve computer performance in terms of resource utilization and application

flexibility. The idea is to separate the hardware from the software to yield better

system efficiency.

A traditional computer runs with a host operating system specially tailored for its

hardware architecture, as shown in Figure. After virtualization, different user

applications managed by their own operating systems (guest OS) can run on the same

hardware, independent of the host OS. This is often done by adding additional

software, called a virtualization layer as shown in Figure. Virtualization can be

implemented at various operational levels, as given below: Instruction set architecture

(ISA) level Hardware level Operating system level Library support level

Application level Instruction Set Architecture Level At the ISA level, virtualization

is performed by emulating a given ISA by the ISA of the host machine. The basic

emulation method is through code interpretation. An interpreter program interprets

the source instructions to target instructions one by one. One source instruction may

require tens or hundreds of native target instructions to perform its function.

Obviously, this process is relatively slow. For better performance, dynamic binary

translation is desired. This approach translates basic blocks of dynamic source

instructions to target instructions. The basic blocks can also be extended to program

traces or super blocks to increase translation efficiency. A virtual instruction set

architecture (V-ISA) thus requires adding a processor- specific software translation

layer to the compiler.

Figure 2.11 Memory Virtualization

Hardware Abstraction Level It is performed right on top of the bare hardware and

generates a virtual hardware environment for a VM. On the other hand, the process

manages the underlying hardware through virtualization. The idea is to virtualize a

computer’s resources, such as its processors, memory, and I/O devices so as hardware

utilization rate by multiple users concurrently may be upgraded Operating System

Level OS-level virtualization creates isolated containers on a single physical server

and the OS instances to utilize the hardware and software in data centers.

The containers behave like real servers. OS-level virtualization is commonly used

in creating virtual hosting environments to allocate hardware resources among a large

number of mutually distrusting users. Library Support Level Virtualization with

library interfaces is possible by controlling the communication link between

applications and the rest of a system through API hooks. The software tool WINE has

implemented this approach to support Windows applications on top of UNIX hosts.

Another example is the vCUDA which allows applications executing within VMs to

leverage GPU hardware acceleration. User-Application Level On a traditional OS, an

application often runs as a process. Therefore, application-level virtualization is also

known as process-level virtualization. The most popular approach is to deploy high

level language (HLL) VMs. In this scenario, the virtualization layer exports an

abstraction of a VM that can run programs written and compiled to a particular

abstract machine definition. Any program written in the HLL and compiled for this

VM will be able to run on it.

The Microsoft .NET CLR and Java Virtual Machine (JVM) are two good examples

of this class of VM. Other forms of application-level virtualization are known as

application isolation, application sandboxing, or application streaming. The process

involves wrapping the application in a layer that is isolated from the host OS and other

applications. The result is an application that is much easier to distribute and remove

from user workstations. Virtualization Support at the OS Level It is slow to initialize

a hardware-level VM because each VM creates its own image from scratch and

storage of such images are also slow. OS-level virtualization provides a feasible

solution for these hardware-level virtualization issues. OS virtualization inserts a

virtualization layer inside an operating system to partition a machine’s physical

resources. It enables multiple isolated VMs within a single operating system kernel.

This kind of VM is often called a virtual execution environment (VE). This VE has

its own set of processes, file system, user accounts, network interfaces with IP

addresses, routing tables, firewall rules, and other personal settings. Advantages: VMs

at the operating system level have minimal startup/shutdown costs, low resource

requirements, and high Scalability It is possible for a VM and its host environment to

synchronize state changes when necessary.

2.7 Live VM Migration Steps and Performance Effects

In a cluster built with mixed nodes of host and guest systems, the normal method of

operation is to run everything on the physical machine. When a VM fails, its role

could be replaced by another VM on a different node, as long as they both run with

the same guest OS. In other words, a physical node can fail over to a VM on another

host. This is different from physical-to-physical failover in a tradi-tional physical

cluster. The advantage is enhanced failover flexibility. The potential drawback is that

a VM must stop playing its role if its residing host node fails. However, this problem

can be mitigated with VM life migration.

There are four ways to manage a virtual cluster. First, you can use a guest-based

manager, by which the cluster manager resides on a guest system. In this case,

multiple VMs form a virtual cluster. For example, openMosix is an open source Linux

cluster running different guest systems on top of the Xen hypervisor. Another example

is Sun’s cluster Oasis, an experimental Solaris cluster of VMs supported by a VMware

VMM. Second, you can build a cluster manager on the host systems. The host- based

manager supervises the guest systems and can restart the guest system on another

physical machine. A good example is the VMware HA system that can restart a guest

system after failure.

These two cluster management systems are either guest-only or host-only, but they

do not mix. A third way to manage a virtual cluster is to use an independent cluster

manager on both the host and guest systems. This will make infrastructure

management more complex, however. Finally, you can use an integrated cluster on

the guest and host systems. This means the manager must be designed to distinguish

between virtualized resources and physical resources. Various cluster management

schemes can be greatly enhanced when VM life migration is enabled with minimal

overhead.

VMs can be live-migrated from one physical machine to another; in case of failure,

one VM can be replaced by another VM. Virtual clusters can be applied in

computational grids, cloud platforms, and high- performance computing (HPC)

systems. The major attraction of this scenario is that virtual cluster-ing provides

dynamic resources that can be quickly put together upon user demand or after a node

failure. In particular, virtual clustering plays a key role in cloud computing. When a

VM runs a live ser-vice, it is necessary to make a trade-off to ensure that the migration

occurs in a manner that minimizes all three metrics. The motivation is to design a live

VM migration scheme with negligible downtime, the lowest network bandwidth

consumption possible, and a reasonable total migration time.

Furthermore, we should ensure that the migration will not disrupt other active

services residing in the same host through resource contention (e.g., CPU, network

bandwidth). A VM can be in one of the following four states. An inactive state is

defined by the virtualization platform, under which the VM is not enabled. An active

state refers to a VM that has been instantiated at the virtualization platform to perform

a real task. A paused state corresponds to a VM that has been instantiated but disabled

to process a task or paused in a waiting state. A VM enters the suspended state if its

machine file and virtual resources are stored back to the disk.

Figure 2.12 Live Migration of VM from host to other

Steps 0 and 1: Start migration. This step makes preparations for the migration,

including determining the migrating VM and the destination host. Although users

could manually make a VM migrate to an appointed host, in most circumstances, the

migration is automatically started by strategies such as load balancing and server

consolidation.

Steps 2: Transfer memory. Since the whole execution state of the VM is stored in

memory, sending the VM’s memory to the destination node ensures continuity of the

service provided by the VM. All of the memory data is transferred in the first round,

and then the migration controller recopies the memory data which is changed in the

last round. These steps keep iterating until the dirty portion of the memory is small

enough to handle the final copy. Although precopying memory is performed

iteratively, the execution of programs is not obviously interrupted.

Step 3: Suspend the VM and copy the last portion of the data. The migrating VM’s

execution is suspended when the last round’s memory data is transferred. Other

nonmemory data such as CPU and network states should be sent as well. During this

step, the VM is stopped and its applications will no longer run. This “service

unavailable” time is called the “downtime” of migration, which should be as short as

possible so that it can be negligible to users.

Steps 4 and 5: Commit and activate the new host. After all the needed data is copied,

on the destination host, the VM reloads the states and recovers the execution of

programs in it, and the service provided by this VM continues. Then the network

connection is redirected to the new VM and the dependency to the source host is

cleared. The whole migration process finishes by removing the original VM from the

source host.

CHAPTER THREE

Cloud Platform Architecture
3.1 Types of Cloud Computing Service Models

Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction. According

to a recent survey, the percentage of companies using a public cloud is expected to

rise to 51% in 2016. It is estimated that servers shipping to a public cloud will grow

at 60% CAGR (Compound Growth Annual Rate), while on-site server spending will

be reduced by 8.6% over the next two years.

Although cloud computing has evolved over the time it has been majorly divided

into three broad service categories: Infrastructure as a Service(IAAS), Platform as

a Service (PAAS) and Software as a Service (SAAS) which are broadly discussed

below:

Infrastructure as a Service (IAAS):

Infrastructure as a Service (IAAS) is a form of cloud computing that provides

virtualized computing resources over the internet. In a IAAS model, a third party

provider hosts hardware, software, servers, storage and other infrastructure

components on the behalf of its users. IAAS providers also host users’ applications

and handle tasks including system maintenance backup and resiliency planning.

IAAS platforms offer highly scalable resources that can be adjusted on-demand

which makes it a well- suited for workloads that are temporary, experimental or

change unexpectedly. Other characteristics of IAAS environments include the

automation of administrative tasks, dynamic scaling, desktop virtualization and policy

based services. Other characteristics of IAAS include the automation of administrative

tasks, dynamic scaling, desktop virtualization and policy based services.

Technically, the IaaS market has a relatively low barrier of entry, but it may require

substantial financial investment in order to build and support the cloud infrastructure.

Mature open-source cloud management frameworks like OpenStack are available to

everyone, and provide strong a software foundation for companies that want to build

their private cloud or become a public cloud provider.

IAAS- Network:There are two major network services offered by public cloud

service providers: load balancing and DNS (domain name systems). Load balancing

provides a single point of access to multiple servers that run behind it. A load balancer

is a network device that distributes network traffic among servers using specific load

balancing algorithms. DNS is a hierarchical naming system for computers, or any

other naming devices that use IP addressing for network identification – a DNS system

associates domain names with IP addresses

Platform as a Service (PAAS):

Platform as a Service (PAAS) is a cloud computing model that delivers applications

over the internet. In a PAAS model, a cloud provider delivers hardware and software

tolls, usually those needed for application development, to its users as a service. A

PAAS provider hosts the hardware and software on its own infrastructure. As a result,

PAAS frees users from having to install in-house hardware and software to develop

or run a new application.

PAAS doesn’t replace a business' entire infrastructure but instead a business relies

on PAAS providers for key services, such as Java development or application hosting.

A PAAS provider, however, supports all the underlying computing and software;

users only need to login and start using the platform-usually through a Web browser

interface. PAAS providers then charge for that access on a per-use basis or on monthly

basis.

Some of the main characteristics of PAAS are :

 Scalability and auto-provisioning of the underlying infrastructure.

 Security and redundancy.

 Build and deployment tools for rapid application management and

deployment.

 Integration with other infrastructure components such as web services,

databases, and LDAP.

 Multi-tenancy, platform service that can be used by many concurrent users.

 Logging, reporting, and code instrumentation.

 Management interfaces and/or API.

Software as a Service (SAAS):

Software as a Service(SAAS) is a software distribution model in which applications

are hosted by a vendor or service provider and made available to customers over a

network, typically the Internet. SAAS has become increasingly prevalent delivery

model as underlying technologies that support Web services and service- oriented

architecture (SOA) mature and new development approaches, such as Ajax, become

popular. SAAS is closely related to the ASP (Application service provider) and on

demand computing software delivery models. IDC identifies two slightly different

delivery models for SAAS namely the hosted application model and the software

development model.

Some of the core benefits of using SAAS model are:

 Easier administration.

 Automatic updates and patch management.

 Compatibility: all users will have the same version of software.

 Easier collaboration, for the same reason.

 Global accessibility.

Figure 3.1 Cloud Computing Service Models

Some of the other service categories which are more commonly classified as

Anything as a Service (XAAS) are:

Storage as a Service (SAAS):

Storage as a Service is a business model in which a large company rents space in

their storage infrastructure to a smaller company or individual. The economy of scale

in the service provider’s infrastructure theoretically allows them to provide storage

much more cost effectively than most individuals or corporations can provide their

own storage, when total cost of ownership is considered. Storage as a Service is

generally seen as a good alternative for a small or mid-sized business that lacks the

capital budget and/or technical personnel to implement and maintain their own storage

infrastructure.

Communications as a Service (CAAS):

Communications as a Service (CAAS) is an outsourced enterprise communications

solution that can be leased from a single vendor. Such communications can include

voice over IP (VoIP or Internet telephony), instant messaging (IM), collaboration and

video conference applications using fixed and mobile devices. The CAAS vendor is

responsible for all hardware and software management and offers guaranteed Quality

of Service (QoS). CAAS allows businesses to selectively deploy communications

devices and modes on a pay-as-you-go, as-needed basis.

Network as a Service (NAAS):

Network as a Service (NAAS), a framework that integrates current cloud computing

offerings with direct, yet secure, client access to the network infrastructure. NAAS is

a new cloud computing model in which the clients have access to additional

computing resources collocated with switches and routers. NAAS can include flexible

and extended Virtual Private Network (VPN), bandwidth on demand, custom routing,

multicast protocols, security firewall, intrusion detection and prevention, Wide Area

Network (WAN), content monitoring and filtering, and antivirus.

Monitoring as a Service (MAAS):

Monitoring-as-a-service (MAAS) is a framework that facilitates the deployment of

monitoring functionalities for various other services and applications within the cloud.

The most common application for MAAS is online state monitoring, which

continuously tracks certain states of applications, networks, systems, instances or any

element that may be deployable within the cloud. MAAS makes it easier for users to

deploy state monitoring at different levels of Cloud services.

3.2 Types of Clouds

Cloud computing is usually described in one of two ways. Either based on the cloud

location, or on the service that the cloud is offering.

Based on a cloud location, we can classify cloud as:

 Public

 Private

 Hybrid

 Community cloud

Based on a service that the cloud is offering, we are speaking of either:

 IaaS (Infrastructure-as-a-Service)

 PaaS (Platform-as-a-Service)

 SaaS (Software-as-a-Service)

 Storage, Database, Information, Process, Application, Integration,

Security, Management, Testing- as-a-service

Previously, we have explained how cloud works. Basically, programs that are

needed to run a certain application are now more popularly located on a remote

machine, owned by another company. This is done in order not to lose on the quality

performance due to processing power of your own computer, to save money on IT

support, and yet remain advantageous on the market. These computers that run the

applications, store the data, and use a server system, are basically what we call “the

cloud”.

Where Do I Pull the Switch: Cloud Location

When we talk about public cloud, we mean that the whole computing infrastructure

is located on the premises of a cloud computing company that offers the cloud service.

The location remains, thus, separate from the customer and he has no physical control

over the infrastructure.

As public clouds use shared resources, they do excel mostly in performance, but are

also most vulnerable to various attacks.

Private cloud means using a cloud infrastructure (network) solely by one

customer/organization. It is not shared with others, yet it is remotely located. If the

cloud is externally hosted. The companies have an option of choosing an on-premise

private cloud as well, which is more expensive, but they do have a physical control

over the infrastructure.

The security and control level is highest while using a private network. Yet, the cost

reduction can be minimal, if the company needs to invest in an on-premise cloud

infrastructure.

Hybrid cloud, of course, means, using both private and public clouds, depending

on their purpose.

For example, public cloud can be used to interact with customers, while keeping

their data secured through a private cloud.

http://www.globaldots.com/how-cloud-works/

Figure 3.2 Public and Private Clouds

Community cloud implies an infrastructure that is shared between organizations,

usually with the shared data and data management concerns. For example, a

community cloud can belong to a government of a single country. Community clouds

can be located both on and off the premises.

What Can I Do With It: Cloud Service

The most popular services of the cloud are that of either infrastructure, platform,

software, or storage. As explained before, the most common cloud service is that one

offering data storage disks and virtual servers, i.e. infrastructure. Examples of

Infrastructure-as-a-Service (IaaS) companies are Amazon, Rackspace, Flexiscale.

If the cloud offers a development platform, and this includes operating system,

programming language execution environment, database, and web server, the model

is known as Platform-as-a-Service (PaaS), examples of which are Google App Engine,

Microsoft Azure, Salesforce. Operating system can be frequently upgraded and

developed with PaaS, services can be obtained from diverse sources, and

programming can be worked in teams (geographically distributed).

Software-as-a-Service (SaaS), finally, means that users can access various software

applications on a pay- per-use basis. As opposed to buying licensed programs, often

very expensive. Examples of such services include widely used GMail, or Google

Docs.

3.3 Google cloud platform

This overview covers the following types of services:

 Computing and Computing and hosting services.

http://code.google.com/appengine/

 Storage Services

 Networking Services

 Big Data Services

Computing and hosting services:

Cloud Platform gives you options for computing and hosting. You can choose to

work with a managed application platform, leverage container technologies to gain

lots of flexibility, or build your own cloud- based infrastructure to have the most

control and flexibility. You can imagine a spectrum where, at one end, you have most

of the responsibilities for resource management and, at the other end, Google has most

of those responsibilities:

Figure 3.3 Google Cloud Platform

Application platform:

Google App Engine is Cloud Platform’s platform as a service (PaaS). With App

Engine, Google handles most of the management of the resources for you. For

example, if your application requires more computing resources because traffic to

your website increases, Google automatically scales the system to provide those

resources. If the system software needs a security update, that’s handled for you, too.

When you build your app on App Engine, you can:

 Build your app on top of the App Engine standard environment runtimes

in the languages that the standard environment supports, including: Pyhton 2.7,Java

7,PHP.

 Build your app on top of the App Engine flexible environment runtimes in

the languages that App Engine flexible supports, including: Python 2.7/3.4, Java 8,

Go, Node.js, and Ruby. Or use custom runtimes to use an alternative implementation

of a supported language or any other language.

 Let Google manage app hosting, scaling, monitoring and infrastructure for

you.

 Use the App Engine SDK to develop and test on your local machine in an

environment that simulates App Engine on Cloud Platform.

 Easily use the storage technologies that App Engine is designed to support

in the standard and flexible environments.

Google Cloud SQL is your SQL database, supporting either MySQL or PostgreSQL.

App Engine Datastore is your schemaless, NoSQL datastore. Google Cloud Storage

provides space for your large files.

In the standard environment, you can also choose from a variety of third-party

databases to use with your applications such as Redis, MongoDB, Cassandra, and

Hadoop.

In the flexible environment, you can easily use any third-party database supported

by your language, if the database is accessible from the Google App Engine instance.

In either environment, these third-party databases can be hosted on Compute

Engine, hosted on another cloud provider, hosted on-premises, or managed by a third-

party vendor.

 Use Cloud Endpoints in the standard environment to generate APIs and

client libraries that you can use to simplify data access from other applications.

Endpoints makes it easier to create a web backend for web clients and mobile clients,

such as Android or iOS.

 Use built-in, managed services for activities such as email and user

management.

 Use Cloud Security Scanner to identify security vulnerabilities as a

complement to your existing secure design and development processes.

 Deploy your app by using the App Engine launcher GUI application on

Mac OS X or Microsoft Windows or by using the command line.

 For the standard environment, run your app from the Central US or

Western Europe regions. For a complete list and description of App Engine’s features,

see the App Engine documentation.

Containers:

With container-based computing, you can focus on your application code, instead

of on deployments and integration into hosting environments. Google Kubernetes

Engine is built on the open source Kubernetes system, which gives you the flexibility

of on-premises or hybrid clouds, in addition to Cloud Platform’s public cloud

infrastructure.

When you build with Kubernetes Engine, you can:

 Create and manage groups of Compute Engine instances running

Kubernetes, called clusters. Kubernetes Engine uses Compute Engine instances as

nodes in a cluster. Each node runs the Docker runtime, a Kubeletagent that monitors

the health of the node, and a simple network proxy.

 Declare the requirements for your Docker containers by creating a simple

JSON configuration file.

 Use Google Container Registry for secure, private storage of Docker

images. You can push images to your registry and then you can pull images to any

Compute Engine instance or your own hardware by using an HTTP endpoint.

 Create single- and multi-container pods. Each pod represents a logical host

that can contain one or more containers. Containers in a pod work together by sharing

resources, such as networking resources. Together, a set of pods might comprise an

entire application, a micro-service, or one layer in a multi-tier application.

 Create and manage replication controllers, which manage the creation and

deletion of pod replicas based on a template. Replication controllers help to ensure

that your application has the resources it needs to run reliably and scale appropriately.

 Create and manage services. Services create an abstraction layer that

decouples frontend clients from pods that provide backend functions. In this way,

clients can work without concerns about which pods are being created and deleted at

any given moment.

 Create an external network load balancer.

Virtual machines:

Cloud Platform’s unmanaged compute service is Google Compute Engine. You can

think of Compute Engine as providing an infrastructure as a service (IaaS), because

the system provides a robust computing infrastructure, but you must choose and

configure the platform components that you want to use. With

Compute Engine, it’s your responsibility to configure, administer, and monitor the

systems. Google will ensure that resources are available, reliable, and ready for you

to use, but it’s up to you to provision and manage them. The advantage, here, is that

you have complete control of the systems and unlimited flexibility.

When you build on Compute Engine, you can:

 Use virtual machines (VMs), called instances, to build your application,

much like you would if you had your own hardware infrastructure. You can choose

from a variety of instance types to customize your configuration to meet your needs

and your budget.

 Choose which global regions and zones to deploy your resources in, giving

you control over where your data is stored and used.

 Choose which operating systems, development stacks, languages,

frameworks, services, and other software technologies you prefer.

 Create instances from public or private images .

 Use Cloud Platform storage technologies or any third-party technologies

you prefer.

 Use Google Cloud Launcher to quickly deploy pre-configured software

packages. For example, you can deploy a LAMP or MEAN stack with just a few

clicks.

 Create instance groups to more easily manage multiple instances together.

 Use autoscaling with an instance group to automatically add and remove

capacity.

 Attach and detach disks as needed.

 Use SSH to connect directly to your instances.

Combining computing and hosting options:

You don’t have to stick with just one type of computing service. For example, you

can combine App Engine and Compute Engine to take advantage of the features and

benefits of each.

Storage services:

Whatever your application, you’ll probably need to store some data. Cloud Platform

provides a variety of storage services, including:

 A SQL database in Cloud SQL, which provides either MySQL or

PostgreSQL databases.

 A fully managed, mission-critical, relational database service in Cloud

Spanner that offers transactional consistency at global scale, schemas, SQL querying,

and automatic, synchronous replication for high availability.

 Two options for NoSQL data storage: Cloud Datastore and Cloud Bigtable.

 Consistent, scalable, large-capacity data storage in Cloud Storage. Cloud

Storage comes in several flavors:

 Multi-Regional provides maximum availability and geo-redundancy.

 Regional provides high availability and a localized storage location.

 Nearline provides low-cost archival storage ideal for data accessed less

than once a month.

 Coldline provides the lowest-cost archival storage for backup and disaster

recovery.

 Persistent disks on Compute Engine, for use as primary storage for your

instances. Compute Engine offers both hard-disk-based persistent disks, called

standard persistent disks, and solid-state persistent disks (SSD).

Networking services:

While App Engine manages networking for you, and Kubernetes Engine uses the

Kubernetes model, Compute Engine provides a set of networking services. These

services help you to load-balance traffic across resources, create DNS records, and

connect your existing network to Google’s network.

Networks, firewalls, and routes:

Compute Engine provides a set of networking services that your VM instances use.

Each instance can be attached to only one network. Every Compute Engine project

has a default network. You can create additional networks in your project, but

networks cannot be shared between projects.

Firewall rules govern traffic coming into instances on a network. The default

network has a default set of firewall rules, and you can create custom rules, too.

A route lets you implement more advanced networking functions in your instances,

such as creating VPNs. A route specifies how packets leaving an instance should be

directed. For example, a route might specify that packets destined for a particular

network range should be handled by a gateway virtual machine instance that you

configure and operate.

Load balancing:

If your website or application is running on Compute Engine, the time might come

when you’re ready to distribute the workload across multiple instances. Compute

Engine’s server-side load balancing features provide you with the following options:

 Network load balancing lets you distribute traffic among server instances

in the same region based on incoming IP protocol data, such as address, port, and

protocol. Network load balancing is a great solution if, for example, you want to meet

the demands of increasing traffic to your website.

 HTTP/HTTPS load balancing enables you to distribute traffic across

regions so you can ensure that requests are routed to the closest region or, in the event

of a failure or over-capacity limitations, to a healthy instance in the next closest region.

You can also use HTTP/HTTPS load balancing to distribute traffic based on content

type. For example, you might set up your servers to deliver static content, such as

images and CSS, from one server and dynamic content, such as PHP pages, from a

different server. The load balancer can direct each request to the server that provides

each content type.

Cloud DNS:

You can publish and maintain Domain Name System (DNS) records by using the

same infrastructure that Google uses. You can use the Google Cloud Platform

Console, the command line, or a REST API to work with managed zones and DNS

records.

https://cloud.google.com/compute/docs/load-balancing/

Advanced connectivity:

If you have an existing network that you want to connect to Cloud Platform

resources, Google Cloud Interconnect offers three options for advanced connectivity:

 Carrier Interconnect enables you to connect your infrastructure to Google’s

network edge through highly available, lower-latency connections by using service

providers. You can also extend your private network into your private Compute

Engine network over Carrier Interconnect links by using a VPN tunnel between the

networks.

 You can establish a direct peering connection between your business

network and Google’s. With this connection, you can exchange Internet traffic

between your network and Google’s at one of Google’s broad-reaching Edge network

locations. Visit Google’s peering site to find out more information about edge

locations.

 Cloud VPN lets you connect your existing network to your Compute

Engine network via an IPsec connection. You can use VPN to connect two Compute

Engine VPN gateways to each other.

Big data services:

Big data services enable you to process and query big data in the cloud to get fast

answers to complicated questions.

Data analysis:

BigQuery provides data analysis services. With BigQuery, you can:

 Create custom schemas that organize your data into datasets and tables.

 Load data from a variety of sources, including streaming data.

 Use SQL-like commands to query massive datasets very quickly. BigQuery

is designed and optimized for speed.

 Use the web UI, command-line interface, or API.

 Load, query, export, and copy data by using jobs.

 Manage data and protect it by using permissions.

Batch and streaming data processing:

Cloud Dataflow provides a managed service and set of SDKs that you can use to

perform batch and streaming data processing tasks. Dataflow works well for high-

volume computation, especially when the processing tasks can clearly and easily be

divided into parallel workloads. Dataflow is also great for extract- transform-load

(ETL) tasks, which are useful for moving data between different storage media,

transforming data into a more desirable format, or loading data onto a new storage

system.

3.4 Amazon cloud computing infrastructure

Data storage in clouds is very popular and widely used in the modern world. The

Amazon is one of the companies which provide this service. Amazon Web Services

offers the inexpensive and reliable cloud computing services, that’s why many large

companies prefer the Amazon Cloud for storage and operating their data. It is

convenient to draw various AWS diagrams explaining the use of amazon cloud with

help of tools of AWS Architecture Diagrams Solution from the Computer and

Networks Area of ConceptDraw.

Figure 3.4 Amazon Web Services(AWS)

AWS:

The AWS diagrams are convenient way for explaining the work of Amazon Web

Services. ConceptDraw PRO diagramming and vector drawing software offers the

AWS Architecture Diagrams Solution from the Computer and Networks Area for fast

and easy creating the AWS diagrams of any complexity.

In 2006, Amazon Web Services (AWS) started to offer IT services to the market in

the form of web services, which is nowadays known as cloud computing. With this

cloud, we need not plan for servers and other IT infrastructure which takes up much

of time in advance. Instead, these services can instantly spin up hundreds or thousands

of servers in minutes and deliver results faster. We pay only for what we use with no

up-front expenses and no long-term commitments, which makes AWS cost efficient.

Today, AWS provides a highly reliable, scalable, low-cost infrastructure platform

in the cloud that powers multitude of businesses in 190 countries around the world.

What is Cloud Computing?

Cloud computing is an internet-based computing service in which large groups of

remote servers are networked to allow centralized data storage, and online access to

computer services or resources.

Using cloud computing, organizations can use shared computing and storage

resources rather than building, operating, and improving infrastructure on their own.

Cloud computing is a model that enables the following features.

Users can provision and release resources on-demand.

Resources can be scaled up or down automatically, depending on the load.

Resources are accessible over a network with proper security.

Cloud service providers can enable a pay-as-you-go model, where customers are

charged based on the type of resources and per usage.

Types of Clouds:

There are three types of clouds − Public, Private, and Hybrid cloud.

Public Cloud:

In public cloud, the third-party service providers make resources and services

available to their customers via Internet. Customer’s data and related security is with

the service providers’ owned infrastructure.

Private Cloud:

A private cloud also provides almost similar features as public cloud, but the data

and services are managed by the organization or by the third party only for the

customer’s organization. In this type of cloud, major control is over the infrastructure

so security related issues are minimized.

Hybrid Cloud:

A hybrid cloud is the combination of both private and public cloud. The decision to

run on private or public cloud usually depends on various parameters like sensitivity

of data and applications, industry certifications and required standards, regulations,

etc.

Figure 3.5 Amazon Web Services

Cloud Service Models:

There are three types of service models in cloud − IaaS, PaaS, and SaaS.

IaaS:

IaaS stands for Infrastructure as a Service. It provides users with the capability to

provision processing, storage, and network connectivity on demand. Using this

service model, the customers can develop their own applications on these resources.

PaaS:

PaaS stands for Platform as a Service. Here, the service provider provides various

services like databases, queues, workflow engines, e-mails, etc. to their customers.

The customer can then use these components for building their own applications. The

services, availability of resources and data backup are handled by the service provider

that helps the customers to focus more on their application’s functionality.

SaaS:

SaaS stands for Software as a Service. As the name suggests, here the third-party

providers provide end-user applications to their customers with some administrative

capability at the application level, such as the ability to create and manage their users.

Also some level of customizability is possible such as the customers can use their own

corporate logos, colors, etc.

Advantages of Cloud Computing:

Here is a list of some of the most important advantages that Cloud Computing has

to offer −

Cost-Efficient − Building our own servers and tools is time-consuming as well as

expensive as we need to order, pay for, install, and configure expensive hardware,

long before we need it. However, using cloud computing, we only pay for the amount

we use and when we use the computing resources. In this manner, cloud computing is

cost efficient.

Reliability − A cloud computing platform provides much more managed, reliable

and consistent service than an in-house IT infrastructure. It guarantees 24x7 and 365

days of service. If any of the server fails, then hosted applications and services can

easily be transited to any of the available servers.

Unlimited Storage − Cloud computing provides almost unlimited storage capacity,

i.e., we need not worry about running out of storage space or increasing our current

storage space availability. We can access as much or as little as we need.

Backup & Recovery − Storing data in the cloud, backing it up and restoring the

same is relatively easier than storing it on a physical device. The cloud service

providers also have enough technology to recover our data, so there is the convenience

of recovering our data anytime.

Easy Access to Information − Once you register yourself in cloud, you can access

your account from anywhere in the world provided there is internet connection at that

point. There are various storage and security facilities that vary with the account type

chosen.

Disadvantages of Cloud Computing:

Although Cloud Computing provides a wonderful set of advantages, it has some

drawbacks as well that often raise questions about its efficiency.

Security issues:

Security is the major issue in cloud computing. The cloud service providers

implement the best security standards and industry certifications, however, storing

data and important files on external service providers always bears a risk.

AWS cloud infrastructure is designed to be the most flexible and secured cloud

network. It provides scalable and highly reliable platform that enables customers to

deploy applications and data quickly and securely.

Technical issues:

As cloud service providers offer services to number of clients each day, sometimes

the system can have some serious issues leading to business processes temporarily

being suspended. Additionally, if the internet connection is offline then we will not

be able to access any of the applications, server, or data from the cloud.

Not easy to switch service providers:

Cloud service providers promises vendors that the cloud will be flexible to use and

integrate, however switching cloud services is not easy. Most organizations may find

it difficult to host and integrate current cloud applications on another platform.

Interoperability and support issues may arise such as applications developed on Linux

platform may not work properly on Microsoft Development Framework (.Net).

3.5 Microsoft Azure

Microsoft Azure, formerly known as Windows Azure, is Microsoft’s public cloud

computing platform. It provides a range of cloud services, including those for

compute, analytics, storage and networking. Users can pick and choose from these

services to develop and scale new applications, or run existing applications, in the

public cloud.

Microsoft Azure, formerly known as Windows Azure, is Microsoft’s public cloud

computing platform. It provides a range of cloud services, including those for

compute, analytics, storage and networking. Users can pick and choose from these

services to develop and scale new applications, or run existing applications, in the

public cloud.

Microsoft Azure is widely considered both a Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS) offering.

Microsoft categorizes Azure services into 11 main product types:

1. Compute – these services provide virtual machines, containers, batch

processing and remote application access.

2. Web and mobile – these services support the development and deployment

of web and mobile applications, and also offer features for API management,

notification and reporting.

3. Data storage – this category includes Database as a Service offerings for

SQL and NoSQL, as well as unstructured and cached cloud storage.

4. Analytics – these services provide distributed analytics and storage, as well

as real-time analytics, big data analytics, data lakes, machine learning and data

warehousing.

5. Networking – this group includes virtual networks, dedicated connections

and gateways, as well as services for traffic management, load balancing and domain

name system (DNS) hosting.

6. Media and content delivery network (CDN) – these services include on-

demand streaming, encoding and media playback and indexing.

7. Hybrid integration – these are services for server backup, site recovery

and connecting private and public clouds.

8. Identity and access management (IAM) – these offerings ensure only

authorized users can employ Azure services, and help protect encryption keys and

other confidential information.

9. Internet of Things (IoT) – these services help users capture, monitor and

analyze IoTdata from sensors and other devices.

10. Development – these services help application developers share code, test

applications and track potential issues. Azure support a range of application

programming languages, including JavaScript, Python, .NET and Node.js.

11. Management and security – these products help cloud administrators

manage their Azure deployment, schedule and run jobs, and create automation. This

product group also includes capabilities for identifying and responding to cloud

security threats.

The full list of Azure services is constantly subject to change. Users should check

the Microsoft Azure website for updates.Just as they can with other public cloud

platforms, some organizations use Azure for data backup and disaster recovery. In

addition, some organizations use Azure as an alternative to their own data center.

Rather than investing in local servers and storage, these organizations choose to run

some, or all, of their business applications in Azure.

Microsoft introduced Azure in October 2008. The cloud platform was originally

called Windows Azure, but was rebranded to Microsoft Azure in April 2014. Azure

competes with other public cloud platforms, including Amazon Web Services (AWS)

and Google Cloud Platform.

To ensure availability, Microsoft has Azure data centers located around the world.

As of January 2016, Microsoft said Azure services are available in 22 regions across

the globe, including in the United States, Europe, Asia, Australia and Brazil.As with

other public cloud providers, Azure primarily uses a pay-as-you- go pricing modelthat

charges based on usage. However, a single application may use multiple Azure

services, so users should review and manage usage to minimize costs.

Figure 3.6 Microsoft Azure

Azure is productive for developers:

Get your apps to market faster. Azure integrated tools, from mobile DevOps to

serverless computing support your productivity. Build the way you want to, using the

tools and open source technologies you already know. Azure supports a range of

operating systems, programming languages, frameworks, databases and devices.

 Continuously innovate and deliver high-quality apps.

 Provide cross-device experiences with support for all major mobile

platforms.

 Run any stack, Linux-based or Windows-based and use advanced

capabilities such as Kubernetes cluster in Azure Container Service.

Azure is the only consistent hybrid cloud:

Build and deploy wherever you want with Azure, the only consistent hybrid cloud

on the market. Connect data and apps in the cloud and on-premises—for maximum

portability and value from your existing investments. Azure offers hybrid consistency

in application development, management and security, identity management and

across the data platform.

 Extend Azure on-premises and build innovative, hybrid apps with Azure

Stack.

 Connect on-premises data and apps to overcome complexity and optimise

your existing assets.

 Distribute and analyse data seamlessly across cloud and on-premises.

Azure is the cloud for building intelligent apps

Use Azure to create data-driven, intelligent apps. From image recognition to bot

services, take advantage of Azure data services and artificial intelligence to create new

experiences—that scale—and support deep learning, HPC simulations and real-time

analytics on any shape and size of data.

 Develop breakthrough apps with built-in AI.

 Build and deploy custom AI models at scale, on any data.

 Combine the best of Microsoft and open source data and AI innovations.

CHAPTER FOUR

Cloud Programming and Software

Environments

4.1 Features of Cloud and Grid Platforms

In this section, we summarize important features in real cloud and grid platforms. In

four tables, we cover the capabilities, traditional features, data features, and features

for programmers and runtime systems to use. The entries in these tables are source

references for anyone who wants to program the cloud efficiently.

Cloud Capabilities and Platform Features:

The capabilities offer cost-effective utility computing with the elasticity to scale up

and down in power. However, as well as this key distinguishing feature, commercial

clouds offer a growing number of additional capabilities commonly termed “Platform

as a Service” (PaaS). For Azure, current platform features include Azure Table,

queues, blobs, Database SQL, and web and Worker roles. Amazon is often viewed as

offering “just” Infrastructure as a Service (IaaS), but it continues to add platform

features including SimpleDB (similar to Azure Table), queues, notification,

monitoring, content delivery network, relational database, and MapReduce (Hadoop).

Google does not currently offer a broad-based cloud service, but the Google App

Engine (GAE) offers a powerful web application development environment.

Important Cloud Platform Capabilities

Infrastructure Cloud Features

Grid Computing Vs Cloud Computing:

i. Types and the Division

After the evolution, the cloud computing deployment has been changed into public

clouds, private clouds, community clouds, and hybrid clouds.

However, grid computing has a distributed computing system, a distributed

information system, and distributed pervasive systems.

ii. Main Focus and Motto

The main motto of cloud computing is to provide the service at a lower rate and

increase returns. It also provides flexibility and scalability so that the user can easily

use cloud computing with increased availability and security.

However, grid computing basically focuses on networks to solve some complex

problems and has a large-scale goal. Grid computing also delivers a computer as a

utility.

iii. Use and Security

There is a large amount of data stored in the cloud so it provides security according

to it. Data store in the cloud is secured and can access with the help of credentials

only.

Grid computing deals with Idol energy in computers and mostly use for something

sensible.

iv. Basis of Dependency

Cloud Computing is totally dependent on the internet through the data center. The

cloud provides maximum security along with maximum performance.

Grid computing works even if a computer stops or failure occurs. The other

computer will pick up the work making the system more reliable and efficient.

v. Space and Storage

It is easy in the cloud to backup and restores the data as it has fast data processors.

The new updates in cloud computing are efficient and automatic.

In a grid, computing space is saved and access to additional resources can be done.

vi. Difference and Similarity

Cloud computing and grid computing are network-based technologies which have

the same characteristics. They are different from each other in a few terms such as

architecture, business model, and interoperability.

vii. Remote Usage

In cloud computing, the computing resources manage within a single location which

locates at a different place.However, in grid computing, there is a distributed system

where the resources are distributed at different locations and can be located from

different sites.

viii. Resource Requirement

Grid computing involves more amount of resources and other than computers in

networks. Cloud computing doesn’t access resources directly, it gets from the internet.

ix. Problem Solving Techniques

Grid computing uses all kinds of computing resources for job scheduling. We divide

a big task into multiple tasks which we can solve by multiple computers as the work

assigns to a particular computer.

Cloud Computing has resources which are pooling through grouping resources and

requires the basis from the cluster of servers.

x. Services and Capabilities

Cloud computing is nothing but whole internet-based computing. There are lots of

services provided by the cloud such as management of data, data security, job queries,

etc. It eliminates the cost of buying new hardware and software which are necessary

to build applications.

Whereas, grid computing generally use by academic researchers and is capable to

handle large sets of limited job which are complex and involves a large volume of

data.

xi. Terminology

Cloud computing and grid computing share similar characteristics such as resource

pooling. They both are network computing technologies which are different in terms

of architecture, business model, etc.

Grid computing is nothing but a collection of resources from various locations to

resolve a single task. However, cloud computing is a form of computer-based

virtualizes resources which are situated at different locations in the cluster.

xii. Research

In grid computing, the resources are provided as the utility with the grid as a

computing platform. These will group together in the virtual organization with many

user communities which will be able to resolve problems over the internet.

On the other hand, Cloud Computing involves a common group of system

administrator which will be able to perform the complete management.

xiii. Interoperability

Grid computing can handle interoperability easily whereas cloud computing does

not support interoperability and can result in vendor lock-in, which makes it difficult

to transfer from one cloud service provider to another.

4.2 Programming Support of Google App Engine

GAE programming model for two supported languages: Java and Python. A client

environment includes an Eclipse plug-in for Java allows you to debug your GAE on

your local machine. Google Web Toolkit is available for Java web application

developers. Python is used with frameworks such as Django and CherryPy, but

Google also has webapp Python environment.

Figure 4.1 Google App Engine

There are several powerful constructs for storing and accessing data. The data store

is a NOSQL data management system for entities. Java offers Java Data Object (JDO)

and Java Persistence API (JPA) interfaces implemented by the Data Nucleus Access

platform, while Python has a SQL-like query language called GQL. The performance

of the data store can be enhanced by in-memory caching using the memcache, which

can also be used independently of the data store.

Recently, Google added the blobstore which is suitable for large files as its size limit

is 2 GB. There are several mechanisms for incorporating external resources. The

Google SDC Secure Data Connection can tunnel through the Internet and link your

intranet to an external GAE application. The URL Fetch operation provides the ability

for applications to fetch resources and communicate with other hosts over the Internet

using HTTP and HTTPS requests.

An application can use Google Accounts for user authentication. Google Accounts

handles user account creation and sign-in, and a user that already has a Google account

(such as a Gmail account) can use that account with your app. GAE provides the

ability to manipulate image data using a dedicated Images service which can resize,

rotate, flip, crop, and enhance images. A GAE application is configured to consume

resources up to certain limits or quotas. With quotas, GAE ensures that your

application won’t exceed your budget, and that other applications running on GAE

won’t impact the performance of your app. In particular, GAE use is free up to certain

quotas.

Google File System (GFS)

GFS is a fundamental storage service for Google’s search engine. GFS was designed

for Google applications, and Google applications were built for GFS. There are

several concerns in GFS. rate). As servers are composed of inexpensive commodity

components, it is the norm rather than the exception that concurrent failures will occur

all the time. Another concerns the file size in GFS. GFS typically will hold a large

number of huge files, each 100 MB or larger, with files that are multiple GB in size

quite common. Thus, Google has chosen its file data block size to be 64 MB instead

of the 4 KB in typical traditional file systems. The I/O pattern in the Google

application is also special. Files are typically written once, and the write operations

are often the appending data blocks to the end of files. Multiple appending operations

might be concurrent. The customized API can simplify the problem and focus on

Google applications.

Figure shows the GFS architecture. It is quite obvious that there is a single master

in the whole cluster. Other nodes act as the chunk servers for storing data, while the

single master stores the metadata. The file system namespace and locking facilities

are managed by the master. The master periodically communicates with the chunk

servers to collect management information as well as give instructions to the chunk

servers to do work such as load balancing or fail recovery.

Figure 4.2 Searching record in GFS

The master has enough information to keep the whole cluster in a healthy state.

Google uses a shadow master to replicate all the data on the master, and the design

guarantees that all the data operations are performed directly between the client and

the chunk server. The control messages are transferred between the master and the

clients and they can be cached for future use. With the current qualityof commodity

servers, the single master can handle a cluster of more than 1,000 nodes.

Figure 4.3 Read Write operations in GFS

The goal is to minimize involvement of the master. The mutation takes the following

steps:

1. The client asks the master which chunk server holds the current lease for

the chunk and the locations of the other replicas. If no one has a lease, the master

grants one to a replica it chooses (not shown).

2. The master replies with the identity of the primary and the locations of the

other (secondary) replicas. The client caches this data for future mutations. It needs to

contact the master again only when the primary becomes unreachable or replies that

it no longer holds a lease.

3. The client pushes the data to all the replicas. Each chunk server will store

the data in an internal LRU buffer cache until the data is used or aged out. By

decoupling the data flow from the control flow, we can improve performance by

scheduling the expensive data flow based on the network topology regardless of which

chunk server is the primary.

4. Once all the replicas have acknowledged receiving the data, the client sends

a write request to the primary. The request identifies the data pushed earlier to all the

replicas. The primary assigns consecutive serial numbers to all the mutations it

receives, possibly from multiple clients, which provides the necessary serialization. It

applies the mutation to its own local state in serial order.

5. The primary forwards the write request to all secondary replicas. Each

secondary replica applies mutations in the same serial number order assigned by the

primary.

6. The secondaries all reply to the primary indicating that they have

completed the operation.

7. The primary replies to the client. Any errors encountered at any replicas

are reported to the client. In case of errors, the write corrects at the primary and an

arbitrary subset of the secondary replicas. The client request is considered to have

failed, and the modified region is left in an inconsistent state. Our client code handles

such errors by retrying the failed mutation. It will make a few attempts at steps 3

through 7 before falling back to a retry from the beginning of the write.

GFS was designed for high fault tolerance and adopted some methods to achieve

this goal. Master and chunk servers can be restarted in a few seconds, and with such

a fast recovery capability, the window of time in which the data is unavailable can be

greatly reduced. As we mentioned before, each chunk is replicated in at least three

places and can tolerate at least two data crashes for a single chunk of data. The shadow

master handles the failure of the GFS master Big Table

BigTable was designed to provide a service for storing and retrieving structured and

semistructured data. BigTable applications include storage of web pages, per-user

data, and geographic locations. The database needs to support very high read/write

rates and the scale might be millions of operations per second. Also, the database

needs to support efficient scans over all or interesting subsets of data, as well as

efficient joins of large one-to-one and one-to-many data sets. The application may

need to examine data changes over time. The BigTable system is scalable, which

means the system has thousands of servers, terabytes of in-memory data, petabytes of

disk-based data, millions of reads/writes per second, and efficient scans. BigTable is

used in many projects, including Google Search, Orkut, and Google Maps/Google

Earth, among others.

The BigTable system is built on top of an existing Google cloud infrastructure.

BigTable uses the following building blocks:

1. GFS: stores persistent state

2. Scheduler: schedules jobs involved in BigTable serving

3. Lock service: master election, location bootstrapping

4. MapReduce: often used to read/write BigTable data

Web Table stores the data about a web page. Each web page can be accessed by the

URL. The URL is considered the row index. The column provides different data

related to the corresponding URL

Figure 4.4 Web Table

The map is indexed by row key, column key, and timestamp—that is, (row:string,

column: string, time:int64) maps to string (cell contents). Rows are ordered in

lexicographic order by row key. The row range for a table is dynamically partitioned

and each row range is called “Tablet”.

Syntax for columns is shown as a (family:qualifier) pair. Cells can store multiple

versions of data with timestamps. A BigTable master manages and stores the metadata

of the BigTable system. BigTable clients use the BigTable client programming library

to communicate with the BigTable master and tablet servers. BigTable relies on a

highly available and persistent distributed lock service called Chubby.

4.3 Programming on Amazon AWS

AWS platform has many features and offers many services

Features:

Relational Database Service (RDS) with a messaging interface

Elastic MapReduce capability

NOSQL support in SimpleDB

Capabilities:

Auto-scaling enables you to automatically scale your Amazon EC2 capacity up or

down according to conditions.

Elastic load balancing automatically distributes incoming application traffic across

multiple Amazon EC2 instances.

CloudWatch is a web service that provides monitoring for AWS cloud resources,

operational performance, andoverall demand patterns—including metrics such as

CPU utilization, disk reads and writes, and network traffic.

Amazon provides several types of preinstalled VMs. Instances are often called

Amazon Machine Images (AMIs) which are preconfigured with operating systems

based on Linux or Windows, and additional software. Figure 6.24 shows an execution

environment.A MIs are the templates for instances, which are running VMs. The

AMIs are formed from the virtualized compute, storage, and server resource.

Private AMI: Images created by you, which are private by default. You can grant

access to other users to launch your private images.

Public AMI: Images created by users and released to the AWS community, so

anyone can launch instances based on them

Figure 4.5 Amazon Machine Image(AMI)

Paid QAMI: You can create images providing specific functions that can be

launched by anyone willing to pay you per each hour of usage.

Amazon Simple Storage Service (S3):

Amazon S3 provides a simple web services interface that can be used to store and

retrieve any amount of data, at any time, from anywhere on the web. S3 provides the

object- oriented storage service for users. Users can access their objects through

Simple Object Access Protocol (SOAP) with either browsers or other client programs

which support SOAP. SQS is responsible for ensuring a reliable message service

between two processes.

Figure 4.6 AWS S3 Service

The fundamental operation unit of S3 is called an object. Each object is stored in a

bucket and retrieved via a unique, developer-assigned key. In other words, the bucket

is the container of the object. Besides unique key attributes, the object has other

attributes such as values, metadata, and access control information. Through the key-

value programming interface, users can write, read, and delete objects containing from

1 byte to 5 gigabytes of data each. There are two types of web service interface for

the user to access the data stored in Amazon clouds. One is a REST (web 2.0)

interface, and the other is a SOAP interface. Here are some key features of S3:

Redundant through geographic dispersion.

Designed to provide 99.99% durability and 99.99 %availability of objects over a

given year with cheaper reduced redundancy storage (RRS).

Authentication mechanisms to ensure that data is kept secure from unauthorized

access.

Objects can be made private or public, and rights can be granted to specific users.

Per-object URLs and ACLs (access control lists). Default download protocol of

HTTP

Amazon Elastic Block Store (EBS) and SimpleDB:

The Elastic Block Store (EBS) provides the volume block interface for saving and

restoring the virtual images of EC2 instances. The status of EC2 can now be saved in

the EBS system after the machine is shut down.Users can use EBS to save persistent

data and mount to the running instances of EC2. S3 is “Storage as a Service” with a

messaging interface. Multiple volumes can be mounted to the same instance. These

storage volumes behave like raw, unformatted block devices, with user-supplied

device names and a block device interface.

Amazon SimpleDB Service:

SimpleDB provides a simplified data model based on the relational database data

model. Structured data from users must be organized into domains. Each domain can

be considered a table. The items are the rows in the table. A cell in the table is

recognized as the value for a specific attribute (column name) of the corresponding

row. it is possible to assign multiple values to a single cell in the table. This is not

permitted in a traditional relational database. SimpleDB, like Azure Table, could be

called “LittleTable” as they are aimed at managing small amounts of information

stored in a distributed table.

4.4 Emerging Cloud Software Environments

Developments in the cloud computing industry move at a pace that can be

maddening to follow and impossible to predict.But some big-picture trends that will

characterize the market for the next year are coming into focus, even if the

technologies that ultimately enable them and vendors that drive them seem constantly

in flux and vulnerable to disruption.

Many of those emerging cloud computing trends stem from the industry entering a

phase of standardization and increased compatibility—a sign of maturity in any tech

sector.Cloud infrastructure—public, hosted private and on-premises—is increasingly

less siloed, allowing workloads to be more portable and data streams more mobile.

That standardization, largely thanks to the open-source movement, is allowing a

shift in focus up the stack, with new channel roles emerging to support application-

level processes, from enabling artificial intelligence and high-performance

computing, to delivering novel SaaSOps and application development services.

Multi-Cloud Becomes Omni-Cloud:

In 2019, it became banal to say we are headed into a multi-cloud world as enterprises

started routinely deploying workloads across multiple Infrastructure-as-a-Service

providers.But as applications become even more portable, compute cycles easier to

procure in real time, data integration platforms streamline connectivity, and vendors

form cross-platform alliances, that multi-cloud trend might start looking more like an

omni-cloud one in the near future.

As a general rule, the largest enterprises may soon be customers of all the

hyperscalers and some niche providers to boot, allowing them to take advantage of

increasingly differentiated services, specific deals and avoid lock-in.The Hearst Corp.,

which has more than 360 separate businesses, provides a good example of things to

come.The New York-based media, information and services company recently

engaged its digital transformation across Amazon Web Services (AWS), Microsoft

Azure and Google Cloud. That omni-cloud approach gives Hearst developers and

divisions the best competitive posture in all their relevant markets.

Kubernetes Breaks And Blurs Cloud Barriers:

Enterprises select the Kubernetes platform best meeting their unique operational

needs and capabilities. That could be a prescriptive solution along the Red Hat

OpenShift model, an under-the-covers implementation from Pivotal, independent

distributions of the likes offered by Docker or Rancher Labs, or native provider

services like Google GKE, Microsoft AKS and AWS EKS.

The container orchestrator often then becomes the fabric enabling them to extend

applications across disparate cloud infrastructure—delivering on the multi-cloud

promise.As such, Kubernetes isn’t just bringing a wrecking ball to cloud barriers, but

it’s also creating a strange market dynamic.

The cloud infrastructure software vendor increasingly being decoupled from the

provider that owns the buildings that house the server racks is leading to some

offerings that would have been unimaginable a few years back.Consider Google’s

Anthos service, which can run as easily on Amazon Web Services or Microsoft Azure

as it can on Google Cloud Platform. Or the coming VMware Tanzu, that leaps off-

premises to span all those hyper-scalers as well.

The multi-cloud world appears to be one where not only customer workloads span

clouds, but the cloud providers themselves routinely extend into rival territory.

Kubernetes Companions Create New Silos:

Kubernetes has won the day, but the era of cross-cloud unity the container

orchestrator ushers in will be challenged by the ancillary services developing around

it.The Cloud Native Computing Foundation, which keeps tight control over the core

Kubernetes project, has been incubating companion technologies to round out the

stack. CNCF promotes those projects through its CNCF roadmap, a document

detailing a path to comprehensive container adoption based on enterprise use cases.

One technology on that roadmap that’s essential for enterprises deploying hybrid

applications is the Istio service mesh. Other open source projects are increasingly

important components, from Prometheus, to monitor and instrument containerized

applications; the ELK Stack for logging and trouble-shooting (which constitutes

Elasticsearch, Logstash and Kibana); Harbor, a container registry needed for high

availability in production; and Jaeger, emerging as a standard technology for tracing

application logs across microservices.

While the cloud giants aren’t straying far from upstream Kubernetes functionality,

increasingly they look to be promoting competitive technologies to other projects on

the CNCF roadmap. For example, AWS is advising customers to use its native

CloudWatch service, rather than Prometheus, for monitoring. Google does the same

with Stackdriver.

Because balkanization of Kubernetes companion technology can undermine

progress toward cross-cloud unity, tensions may flare as more enterprises adopt cloud-

native infrastructure.

More Kubernetes Consolidation:

Every cloud infrastructure company—public services provider or on-prem hardware

and software vendor—must have a strong Kubernetes proposition to stay competitive

in the current market.Again and again, acquisitions have proven an effective means

for legacy giants to pour fuel on their nascent Kubernetes divisions, or create new

ones from whole cloth.

Most notably in that category, IBM’s $34 billion mega-deal for Red Hat, which

made a strong Kubernetes play with OpenShift and its earlier acquisition of container

pioneer CoreOS.Microsoft expanded its Kubernetes toolkit in 2017 by buying Deis

after fully committing to the project. And NetApp jumped into the market with the

acquisition of StackPointCloud.

VMware may have gotten the best deal of them all when it bought Heptio, a startup

that laid a foundation for development of Tanzu, the platform that will power Dell

Technologies cross-cloud vision in the coming years.But there are more container-

focused startups out there than ever before (Docker being one of them), so expect

major cloud vendors to aggressively make M&A moves on them in the coming year.

Security Acquisitions:

Enterprises deciding on a cloud provider often want access to a full array of

platform-native security tools rather than third-party solutions.Companies that can’t

develop in-house all the capabilities of a modern security stack have to look to buy

them. That’s why security acquisitions have been a major theme over the last year.

VMware complemented its organic security development efforts with a deal for

Carbon Black, an endpoint protection specialist, and then looked to raise its

application security game by buying Intrinsic.Microsoft upped its data security and

governance game when it bought Blue Talon earlier this year. Google brought into its

fold Chronicle, a sister company in Alphabet (though some published reports suggest

the merger is not a hit.)

Broadcom’s just completed its deal for Symantec. Last year Cisco bought Duo

Security and AT&T bought AlienVault to launch a cyber-security division.

But security is such a complex proposition these days that it seems there are always

more gaps to fill. The M&A trend will almost surely continue, if not accelerate, in

2020.There’s no shortage of startups that can help cloud providers of all stripes

establish a full-court portfolio of native security features.

Private Cloud Repatriation Gets Real:

The inevitable march of workloads into the public cloud is starting to look more like

a two-way street.

Containers and other technologies that facilitate application portability are making

it easier for repatriation to private infrastructure. Many companies are taking

advantage as they become more familiar with the nuanced benefits of different

environments.

That doesn’t mean the pace of migrations to public cloud will slow, or even

decelerate. But traffic will flow more freely in both directions as some customers

realize that some workloads actually see cost savings, and performance and security

benefits, when running in software-defined data centers.

And private cloud repatriation will further stimulate the red-hot market enabling

hybrid cloud environments.

All SaaS Becomes Intelligent SaaS:

Every Software-as-a-Service, IT Ops, analytics and BI product is currently being

infused, in various ways and to varying degrees, with machine learning—whether it

needs it or not.Beyond the very real advantages artificial intelligence delivers in

automation and insight, the term is a huge selling point, one it never hurts to throw

into a product pitch.

And from a chatbot to an inference engine to predictive analytics, it’s easy for AI to

find its way into just about any cloud-software product.Some machine-learning based

features are genuinely useful; others just capitalize off the buzz word. But by next

year, it will be hard to find a product that’s not billed as intelligent.

Ramping SaaS Ops:

As Software-as-a-Service proliferates, more specialized platforms are emerging to

manage migrations, operations and spend of those cloud-based apps.To keep up,

SaaSOps is increasingly becoming established as a new role for specialized IT experts,

often in concert with products from an emerging crop of Cloud Access Security

Brokers.

Vendors like BetterCloud, CloudManager and Blissfully are enabling

comprehensive management of solution suites like Microsoft Office 365 and Google

G Suite, as well as Salesforce and other leading SaaS vendors."The term [SaaSOps]

is nebulous now, but can apply to security, license management, spend management,

discovery/mitigation of shadow IT, and on-boarding/off-boarding management across

platforms and business areas responsible for their own apps," Allen Falcon, CEO of

Cumulus Global, explained.

Focus Shifts To App Delivery:

Kubernetes in many ways has brought order to a turbulent cloud infrastructure

market. The container orchestrator is now something close to standard tech for

deploying infrastructure to support cloud-native workloads.That makes it likely

competition will move up the stack to focus on improving application delivery, Dan

Kohn, executive director of the Cloud Native Computing Foundation, told CRN.

Major open source projects will emerge to support ‘app dev’ practices, delivering

services facilitating the packaging and deployment of applications.To make good on

that promise, CNCF has launched a new Application Delivery Special Interest Group.

HPC Falls For Cloud:

High Performance Computing workloads are typically run sporadically and in

batches—a use case where the unique elasticity of the public cloud seems like a major

value proposition.

And yet, the HPC market has largely stayed on-premises, despite the obvious

benefits of being able to scale up and down quickly with a hyper-scale provider. Only

in recent years have HPC users even begun routinely bursting into the cloud to ease

bottlenecks in accessing resources.The root of cloud skepticism has a lot to do with

the kind of work done on HPC systems—they often aid development of new product

designs, proprietary data modeling, and advanced simulations. Scientists, engineers

and product developers have been wary to allow those crown jewels off-site.

That dam is breaking. Pretty soon the expensive, multi-core systems needed to do

advanced computations will shift to public providers.The impetus to not upgrade

capital-intensive data centers, and be able to guarantee resources on-demand, will

prove unstoppable, even if HPC costs in the cloud can be tricky to predict.

CHAPTER FIVE

Storage Systems
5.1 Storage models of file systems and data base

Storage models of file systems:

1. Disk File Systems:

A Disk File System is probably what most people – at least those who would think

about these kinds of things to begin with – have in mind when they think about what

a file system does. It manages block device storage, stores “files” in “directories”,

maintains a file system hierarchy, controls file metadata, and allows for simple I/O

via a few basic system calls. The canonical file system for the Unix family of operating

systems is, of course, the Unix File System (UFS), also known as the Berkeley Fast

File System (FFS).

2. Distributed File Systems

Unlike a disk file system, which provides access to the data it holds only to the

processes running in the operating system the disk is attached to, a distributed file

system may allow different client systems to access a centralized storage resource

simultaneously, thus forming the basis for any NAS solutions.

3. “Other” File Systems

In the Unix world, there exists an old mantra: “Everything is a file.” That is, the

simple API defining file I/O has proven so useful that a number of non-file “things”

have come to implement this interface as well: not only can regular files be accessed

using the open(2), read(2), write(2) and close(2) system calls17, but so can network

sockets and other interprocess communication endpoints, character and block devices,

so-called pseudo-devices (such as /dev/null), and various other “special files”.

Database storage models:

1. Hierarchical model

In a hierarchical model, data is organized into a tree-like structure, implying a single

parent for each record. A sort field keeps sibling records in a particular order.

Hierarchical structures were widely used in the early mainframe database

management systems, such as the Information Management System.

Figure 5.1 Hierarchial Model

2.Network Model

The network model expands upon the hierarchical structure, allowing many-to-

many relationships in a tree-like structure that allows multiple parents. It was most

popular before being replaced by the relational model, and is defined by the

CODASYL specification.

Figure 5.2 Network Model

1. Inverted file model

In an inverted file or inverted index, the contents of the data are used as keys in a

lookup table, and the values in the table are pointers to the location of each instance

of a given content item. This is also the logical structure of contemporary database

indexes, which might only use the contents from a particular columns in the lookup

table. The inverted file data model can put indexes in a second set of files next to

existing flat database files, in order to efficiently directly access needed records in

these files.

2. Relational model

The relational model was introduced by E.F. Codd in 1970 as a way to make

database management systems more independent of any particular application. It is a

mathematical model defined in terms of predicate logic and set theory, and systems

implementing it have been used by mainframe, midrange and microcomputer systems.

5.2 Amazon S3

Amazon Simple Storage Service is storage for the Internet. It is designed to make

web-scale computing easier for developers.Amazon S3 has a simple web services

interface that you can use to store and retrieve any amount of data, at any time, from

anywhere on the web. It gives any developer access to the same highly scalable,

reliable, fast, inexpensive data storage infrastructure that Amazon uses to run its own

global network of web sites. The service aims to maximize benefits of scale and to

pass those benefits on to developers.

1. Working with Amazon S3 Buckets

Amazon S3 is cloud storage for the Internet. To upload your data (photos, videos,

documents etc.), you first create a bucket in one of the AWS Regions. You can then

upload any number of objects to the bucket.

In terms of implementation, buckets and objects are resources, and Amazon S3

provides APIs for you to manage them. For example, you can create a bucket and

upload objects using the Amazon S3 API. You can also use the Amazon S3 console

to perform these operations. The console internally uses the Amazon S3 APIs to send

requests to Amazon S3.

Amazon S3 bucket names are globally unique, regardless of the AWS Region in

which you create the bucket. You specify the name at the time you create the bucket.

Amazon S3 creates buckets in a region you specify. You can choose any AWS

Region that is geographically close to you to optimize latency, minimize costs, or

address regulatory requirements. For example, if you reside in Europe, you might find

it advantageous to create buckets in the EU (Ireland) or EU (Frankfurt) regions

Figure 5.3 Amazon S3

2. Working with Amazon S3 Objects

Amazon S3 is a simple key, value store designed to store as many objects as you

want. You store these objects in one or more buckets. An object consists of the

following:



 Key – The name that you assign to an object. You use the object

key to retrieve the object.

 Version ID – Within a bucket, a key and version ID uniquely

identify an object.

The version ID is a string that Amazon S3 generates when you add an object to a

bucket. Value – The content that you are storing.

An object value can be any sequence of bytes. Objects can range in size from zero

to 5 TB. Metadata – A set of name-value pairs with which you can store information

regarding the object. You can assign metadata, referred to as user-defined metadata,

to your objects in Amazon S3. Amazon S3 also assigns system-metadata to these

objects, which it uses for managing objects Subresources – Amazon S3 uses the

subresource mechanism to store object-specific additional information.

Because subresources are subordinates to objects, they are always associated with

some other entity such as an object or a bucket.

Access Control Information – You can control access to the objects you store in

Amazon S3. Amazon S3 supports both the resource-based access control, such as an

Access Control List (ACL) and bucket policies, and user-based access control.

3. Managing Access Permissions to Your Amazon S3 Resources

By default, all Amazon S3 resources—buckets, objects, and related subresources

(for example,lifecycle configuration and website configuration)—are private: only the

resource owner, an AWS account that created it, can access the resource. The resource

owner can optionally grant access permissions to others by writing an access policy.

Amazon S3 offers access policy options broadly categorized as resource-based

policies and user policies. Access policies you attach to your resources (buckets and

objects) are referred to as resource-based policies. For example, bucket policies and

access control lists (ACLs) are resource-based policies. You can also attach access

policies to users in your account. These are called user policies. You may choose to

use resource-based policies, user policies, or some combination of these to manage

permissions to your Amazon S3 resources. The introductory topics provide general

guidelines for managing permissions.

5.3 Mega Store Architecture

Megastore handles over 3 billion writes and 20 billion reads daily on almost 8 PB

of primary data across many global data centers.

The mission Support Internet apps such as Google’s AppEngine.

 Scale to millions of users

 Responsive despite Internet latencies to impatient users

 Easy for developers

 Fault resilience from drive failures to data center loss and everything in

between

 Low-latency synchronous replication to distant sites Availability and scale

To achieve availability and global scale the designers implemented two key

architectural features:

 For availability, an asynchronous log replicator optimized for long-

distance

 For scale, data partitioned into small databases each with its own replicated

log

 Entities

An e-mail account is a natural entity. But defining other entities is more complex.

 Geographic data lacks natural granularity. For example, the globe is

divided into non-overlapping entities. Changes across these geographic entities use

(expensive) two-phase commits.

Replication:

Megastore uses Paxos to manage synchronous replication. But in order to make

Paxos practical despite high latencies the team developed some optimizations:

 Fast reads. Current reads are usually from local replicas since most writes

succeed on all replicas.

 Fast writes. Since most apps repeatedly write from the same region, the

initial writer is granted priority for further replica writes. Using local replicas and

reducing write contention for distant replicas minimizes latency.

 Replica types. In addition to full replicas Megastore has 2 other replica

types:

witness replicas. Witnesses vote in Paxos rounds and store the write-ahead log but

do not store entity data or indexes to keep storage costs low. They are also tiebreakers

when isn’t a quorum.

Read-only replicas are the inverse: nonvoting replicas that contain full snapshots of

the data. Their data may be slightly stale but they help disseminate the data over a

wide area without slowing writes.

API

The insight driving the API is that the big win is scalable performance rather than a

rich query language. Thus a focus on controlling physical locality and hierarchical

layouts.

Architecture:

Figure 5.4 Mega Store Architecture

Availability:

As coordinator servers do most local reads their availability is critical to maintaining

Megastore’s performance. The coordinators use an out-of-band protocol to track other

coordinators and use Google’s Chubby distributed lock service to obtain remote locks.

If the coordinator loses a majority of its locks it will consider all entities in its purview

to be out of date until the locks are regained and the coordinator is current.

Performance:

Because Megastore is geographically distributed, application servers in different

locations may initiate writes to the same end entity group simultaneously. Only one

of them will succeed and the other writers will have to retry.

TheStorageMojo:

As Brewer’s CAP theorem showed, a distributed system can’t provide consistency,

availability and partition tolerance to all nodes at the same time. But this paper shows

that by making smart choices we can get darn close as far as human users are

concerned.

5.4 Google’s Big Table

Bigtable is a compressed, high performance, and proprietary data storage system

built on Google File System, Chubby Lock Service, SSTable (log-structured storage

like LevelDB) and a few other Google technologies. On May 6, 2015, a public version

of Bigtable was made available as a service. Bigtable also underlies Google Cloud

Datastore, which is available as a part of the Google Cloud Platform.

Bigtable development began in 2004 and is now used by a number of Google

applications, such as web indexing,MapReduce, which is often used for generating

and modifying data stored in Bigtable,Google MapsGoogle Book Search, "My Search

History", Google Earth, Blogger.com.

Code hosting, YouTube,and Gmail.Google’s reasons for developing its own

database include scalability and better control of performance characteristics

Google’s Spanner RDBMS is layered on an implementation of Bigtable with a

Paxos group for two-phase commits to each table. Google F1 was built using Spanner

to replace an implementation based on MySQL.

Bigtable maps two arbitrary string values (row key and column key) and timestamp

(hence three- dimensional mapping) into an associated arbitrary byte array. It is not a

relational database and can be better defined as a sparse, distributed multi-dimensional

sorted map Bigtable is designed to scale into the petabyte range across "hundreds or

thousands of machines, and to make it easy to add more machines the system and

automatically start taking advantage of those resources without any reconfiguration".

Figure 5.5 Big Table Architecture

Google’s thorough description of Bigtable’s inner workings has allowed other

organizations and open source development teams to create Bigtable derivatives,

including the Apache HBase database, which is built to run on top of the Hadoop

Distributed File System (HDFS). Other examples include Cassandra, which originated

at Facebook Inc., and Hypertable, an open source technology that is marketed in a

commercial version as an alternative to HBase.

5.5 General Parallel File System

The General Parallel File System (GPFS) is a high-performance clustered file

system developed by IBM. It can be deployed in shared-disk or shared-nothing

distributed parallel modes. It is used by many of the world’s largest commercial

companies, as well as some of the supercomputers on the Top 500 List.For example,

GPFS was the filesystem of the ASC Purple Supercomputer which was composed of

more than 12,000 processors and has 2 petabytes of total disk storage spanning more

than 11,000 disks.GPFS began as the Tiger Shark file system, a research project at

IBM’s Almaden Research Center as early as 1993. Shark was initially designed to

support high throughput multimedia applications. This design turned out to be well

suited to scientific computing.

GPFS provides high performance by allowing data to be accessed over multiple

computers at once. Most existing file systems are designed for a single server

environment, and adding more file servers does not improve performance. GPFS

provides higher input/output performance by striping blocks of data from individual

files over multiple disks, and reading and writing these blocks in parallel. Other

features provided by GPFS include high availability, support for heterogeneous

clusters, disaster recovery, security, DMAPI, HSMand ILM.

Figure 5.6 General Parallel File System

Other features of the filesystem include

 Distributed metadata, including the directory tree. There is no single

"directory controller" or "index server" in charge of the filesystem.

 Efficient indexing of directory entries for very large directories. Many

filesystems are limited to a small number of files in a single directory (often, 65536

or a similar small binary number). GPFS does not have such limits.

 Distributed locking. This allows for full Posix filesystem semantics,

including locking for exclusive file access.

 Partition Aware. A failure of the network may partition the filesystem into

two or more groups of nodes that can only see the nodes in their group. This can be

detected through a heartbeat protocol, and when a partition occurs, the filesystem

remains live for the largest partition formed. This offers a graceful degradation of the

filesystem — some machines will remain working.

 Filesystem maintenance can be performed online. Most of the filesystem

maintenance chores (adding new disks, rebalancing data across disks) can be

performed while the filesystem is live. This ensures the filesystem is available more

often, so keeps the supercomputer cluster itself available for longer.

5.5 Architecture of GFS clustering

GFS is enhanced for Google’s core data storage and usage needs (primarily the

search engine), which can generate enormous amounts of data that must be retained.

Figure 5.7 Google File System

Google effort, "BigFiles", developed by Larry Page and Sergey Brin in the early days

of Google, while it was still located in Stanford. Files are divided into fixed-size

chunksof 64 megabytes, similar to clusters or sectors in regular file systems, which

are only extremely rarely overwritten, or shrunk; files are usually appended to or read.

It is also designed and optimized to run on Google’s computing clusters, dense nodes

which consist of cheap "commodity" computers, which means precautions must be

taken against the high failure rate of individual nodes and the subsequent data loss.

Other design decisions select for high data throughputs, even when it comes at the

cost of latency.

A GFS cluster consists of multiple nodes. These nodes are divided into two types:

one Master node and a large number of Chunkservers. Each file is divided into fixed-

size chunks. Chunk servers store these chunks. Each chunk is assigned a unique 64-

bit label by the master node at the time of creation, and logical mappings of files to

constituent chunks are maintained. Each chunk is replicated several times throughout

the network, with the minimum being three, but even more for files that have high

end-in demand or need more redundancy.

The Master server does not usually store the actual chunks, but rather all the

metadata associated with the chunks, such as the tables mapping the 64-bit labels to

chunk locations and the files they make up, the locations of the copies of the chunks,

what processes are reading or writing to a particular chunk, or taking a "snapshot" of

the chunk pursuant to replicate it (usually at the instigation of the Master server, when,

due to node failures, the number of copies of a chunk has fallen beneath the set

number). All this metadata is kept current by the Master server periodically receiving

updates from each chunk server ("Heart-beat messages").

Permissions for modifications are handled by a system of time-limited, expiring

"leases", where the Master server grants permission to a process for a finite period of

time during which no other process will be granted permission by the Master server

to modify the chunk. The modifying chunkserver, which is always the primary chunk

holder, then propagates the changes to the chunkservers with the backup copies. The

changes are not saved until all chunkservers acknowledge, thus guaranteeing the

completion and atomicity of the operation.

Programs access the chunks by first querying the Master server for the locations of

the desired chunks; if the chunks are not being operated on (i.e. no outstanding leases

exist), the Master replies with the locations, and the program then contacts and

receives the data from the chunkserver directly (similar to Kazaa and its supernodes).

Unlike most other file systems, GFS is not implemented in the kernel of an operating

system, but is instead provided as a userspace library.

	1.1 High Performance Computing (HPC) & High Throughput Computing (HTC)
	1.2 Performance Metrics and Scalability Analysis for virtual Machines.
	1.3 GPU Computing, Exascale & beyond
	1.4 Massive Parallel Processors.
	1.5 Degrees of Parallelisms.
	1.6 Computing Paradigms
	1.7 System Models for Distributed and Cloud Computing
	1.8 SOA with Applications
	2.1Implementation Levels of Virtualization
	2.2VMM Design Requirements and Providers
	2.3 XEN Architecture
	2.4 Full Virtualization and Para Virtualization
	2.5 Memory Virtualization
	2.6 Implementation Levels of Virtualization
	2.7 Live VM Migration Steps and Performance Effects
	3.1 Types of Cloud Computing Service Models
	3.2 Types of Clouds
	3.3 Google cloud platform
	3.4 Amazon cloud computing infrastructure
	3.5 Microsoft Azure
	4.1 Features of Cloud and Grid Platforms
	4.2 Programming Support of Google App Engine
	4.3 Programming on Amazon AWS
	4.4 Emerging Cloud Software Environments
	5.1 Storage models of file systems and data base
	5.2 Amazon S3
	5.3 Mega Store Architecture
	5.4 Google’s Big Table
	5.5 General Parallel File System
	5.5 Architecture of GFS clustering

