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1 Basic Definitions and Examples

We shall continue to denote by B(H) the set of all bounded operators acting
on a complex Hilbert space H. For T' € B(H) let R(T) = T(H). I will
denote the identity operator acting on H.

Algebraic properties inside B(H) endowed with the * operation lead to
striking analytic spectral properties.

numbers functions operators
complex, 2Z = Zz complex normal, T*T = TT*.
real, z =72 real self-adjoint, T = T™.
positive, zZ positive positive, T*T
complex unit into unit circle | unitary, T7%T =TT* =1
{0,1} indicator function | projection, T'=T? = T*

Recall that there is a bijection between bounded operators on H and
bounded conjugate linear bilinear forms on H given by

T € B(H) — Br, where Br(z,y) = (Tx,y) r,y€ H.

In fact, there is a bijection between operators acting on H and quadratic
forms on H given by the assignment

T e B(H)— Qr, whereQr(z)= Tx,x) z€H.
This is the content of the following proposition.

1.1. Proposition. For T,T, € B(H) we have that Qr, = Qr, if, and only
’Lf, T1 — TQ.

Proof: Polarization identity for T € B(H) gives us

(Tz,y) = (T(x+y)z+y) —(T(lx-y)z—y)
+i(T(z +iy), z +iy) —i(T(x —iy), x —iy) .

Consequently, (Thz,z) = (Tyz,z) for all x € H implies that By, = Br, and
SO Tl = TQ. O



1.2. Definition. An operator T' € B(H) is called
(i) normal if TT* = T*T.
(i) self-adjoint if T = T*.
(iii) positive if (Tx,z) > 0 for all x € H.
(iv) wnitary if T*T =TT* =1
(v) projection if T =T?* = T*.
1.3. Proposition. Let T € B(H). Then
(i) T is normal if, and only if, ||Tx| = || T*z|| for allxz € H.
(ii) T is self-adjoint if, and only if, (T'z,x) is real for all x € H.
(i) T is unitary if, and only if, T is an inner product preserving surjection.
Proof: (i) For all x € H we have
(T*Tx,2) — (TT*x,x) = (Tx, Tx) — (T*z, T*z) = || Tz||* — || T*=|*.

This, together with Proposition 1.1, implies (i).
(ii) For all x € H we have

(Tz,z) — (T"z,z) = (Tx,z) — (z,Tx) = 203(Tx, x).

It means that 7" = T if, and only if, (T'z, z) is real for all z € H.
(iii) If T is unitary, then, for z,y € H,

(Tz,Ty) = (x,T"Tx) = (x,x).

If v € R(T)*, then
0=(TT"z,z) = (x,x)

and so x = 0. Hence, T is a surjection which preserves the inner product.
On the other hand, if 7" is an inner product preserving surjection, then T
has an inverse and

(T"Tz,x) = (Tx,Tx) = (z,x),

which implies that T-! = T* and so T*T = TT* = I.
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1.4. Example. (Discrete diagonal) Let H be a Hilbert space with orthonor-
mal basis (e,)22 ;. Let g : N — C be a bounded function. Define

Tx = Zg(n) (x,en)en .

(This is a diagonal operator uniquely given by Te, = g(n)e,.)
Let us observe that

||| = sup [g(n)] -
neN

As (Ten, e,) = (en, g(n)e,) we see that

T x = ZM(%, €n)eén

for all x € H. All diagonal operators are normal. In a certain sense the
converse holds - see below.

e T is self-adjoint <= g(n) = g(n) for all n € N (g is real).

e T is positive <= (Tz,z) > 0 for all x <=>" g(n)|(z,e,)]* > 0 for all
x € H. But this is equivalent to g(n) > 0 for all n € N.

e I'is unitary <= 1T"T' =TT = 1.
But T"Tx = 37,7, g(n)g(n)(z, ex) en = 3207, |9(n)? (2, ex)en.
In other words, T is unitary <= |g(n)| = 1 for all n.

Now we shall deal with a generalization of this example to cover also
operators with continuous spectrum.

1.5. Example. Let (X, pu) be a o-finite measure space. For a measurable
function, f, on X define

Ifllo = If{K >0]||f(z)] < K for a.a. z € X}

= sup{L > 0] |f| > L on some set of nonzero measure} .

L>®(X,p) ... space of all measurable function with finite || - ||. Put H =
L*(X,p) and fix f € L®(X, p).
Define multiplication operator My acting on H by

Mi(g)=fg, g€L*X,p).



Observe that
[ sgta)Pauta) = [ 15@)Pla@) Panta) < 171 lolP-
It implies [[My[| < [[f]oo-
On the other hand, if 0 < a < ||f||c, then p{z||f(z)| > a} > 0 and so

there is a set Y C {z| |f(z)| > a} of finite nonzero measure. Then, for the
characteristic function yy, of the set Y

1M O ) = /Y [f(@)fdp(z) > oY) = o®|xv||*.

Therefore, || M¢|| > a. In summary,

1Ml =l fooll -

We have Mj = My and so MyMy = MyM; = My2. Notably, My is

normal.

Deep spectral theorem says that all normal operators arise in
this way !

o )M, is self-adjoint <= f is real:
1My — M| = 1My fll = If = Flloc -

o )M is positive <= f > 0 a.e. :

(Myg,g) = /X F(@) lg(@) Pdp(z)

and so M is positive if, and only if, [, f(z)du(z) > 0 for each measurable
set Y, which is equivalent to f > 0 a.e.

e My is unitary <= |f| =1 a.e. :

11— MyMF|| = [[Ma—js2)ll = 111 = | ]l -



e )M is a projection <= f = xy for some measurable Y

f is real and
1My = M| = [My_pz]l = |If = f*ll -

Consequently, f is 0 or 1 a.e.

Note that M; may have no eigenvalue: Consider L>[0, 1] and f(z) = =.
Let A € C.

zg(x) = Ag(x) for almost all x implies (x — A\)g(z) =0 and so g = O a.e..

Matrix point of view: If H is a Hilbert space with an orthonormal basis
(en), then T € B(H) is determined by an infinite matrix

(Temsen))mmn -

T* corresponds to adjoint matrix. In Example 1.4 we have seen T whose
matrix is diagonal.

1.6. Example. Let x,y € H be distinct. Define
Tpy(2)=(z,2)y z€H.
For u,v € H we obtain
(Toyu,v) = (u, z)(y,v) = (u, (v,y)z) = (u, Tyo(v)),

implying
T =T

z,y ~ YT

Now
Toy Ty (2) = (z,2)(2,9)y = [|z]|*Ty,(2) .

By exchanging the roles of x and y, we obtain
T3y Toy = 1" Tea -

(If x and y are unit vectors, then the map 7, , is called a partial isometry
exchanging one dimensional projections onto span of x and span of y, respec-
tively. This is important for the structure theory of projections — we have to
deal with non-normal operators!)



1.7. Proposition. Any projection P € B(H) is an orthogonal projection of
H onto P(H).

Proof: Put M = P(H). M is closed because P> = P implies that
P(H)={x € H| Px = x}. We can write H = M & M*.
If y € M+, then (x, Py) = (Px,y) = 0 for each x € H and so Py = 0.
Therefore, if z = x + vy, where + € M and y € M*, then

Plx+y) ==z.

2 Spectral Theory of Normal Operators
Recall that for T' € B(H) the spectrum, Sp 7, is a subset of C defined by
A€ SpT <= (T — AI) has not an inverse in B(H).

Point spectrum

Sp, T =0,(T) ={\ € C| (T — \I) is not one-to one.}

P
In other words, for each A\ € 0,(T") there is a nonzero y in H such that
Ty =\y.

Vector y is called an eigenvector.

Spectral radius r(7") = sup{|\| | A € Sp(T)}.

Spectrum is always a compact subset of C.

2.1. Proposition. LetT € B(H) be normal. Then the following statements
hold:

(i) If Tx = A for some A € C and x € H, then T*z = \x.
(i) If A1 # Ao are complex numbers, then

Ker(T — A1) L Ker(T — Xo1).



Proof (i) By normality of 7', for each x € H,
(T = AD)z|| = (T = Al)*z|| = [(T" = AD)z].

It implies (i).
(ii) Suppose that z,y € H and A; # Ay are in C such that Tx = Az,
Ty = Ayy. Then

>‘1<$’y) = (Txhy) = (va*y) = (xa)‘_Qy> = )‘Q(xvy> :

Since Ay # Ag, (z,y) = 0. O

Spectrum of a normal operator has a simpler structure than in general
case.

2.2. Proposition. Let T' € B(H) be a normal operator. Then

ANESpT <= thereis ¢ > 0 such that
(T — N)x|| > c||z|| for all z € H . (1)

Proof: Without loss of generality assume that A = 0. Suppose that there
is ¢ > 0 satisfying the condition (1). Then T is one-to-one. It follows from
(1) that range T'(H) is complete and thereby closed in H. It remains to prove
that R(T) = H. Choose x € R(T)*. Then

0= (2,TT*z) = (v, T*Tx) = (Tz,Tz) = ||Tx|?* > ||=||*.

In other words, = 0 and R(T) = H. So (1) implies 0 € SpT". The reverse
implication is clear. 0

2.3. Corollary. IfT € B(H) is normal and A € SpT' \ 0,(T),
then (T'— A )(H) is not closed.

Proof: If T — Al is one-to-one and (T — A )(H) is closed, then, by the
Inverse Mapping Theorem, there is a continuous linear map
S: (T — M )(H) — H such that S(T'— M)z = z for all z € H. It means
that ||z|| < ||S||(T — A)z||. As ||S]| # 0, we see that
1

(T — XD)zx|| > —||z] -
(7= ADjel >

In view of Proposition 2.2, A &€ SpT. 0J



2.4. Corollary. (Approzimate Spectrum) If T € B(H) is normal, then \ €
Sp T if, and only if, there is a sequence (x,) of unit vectors such that
(T — A)x,|| — 0 as n — oo.

Proof: By Proposition 2.2 A € SpT <= infjy =1 [|[(T"— AM)z|| =0. O

Spectrum of a normal operator is equal to approximate point spectrum.
2.5. Corollary. If T € B(H) is normal, then
SpT C{(Tw,2) | =[] = 1} .

Proof: If A € SpT then there is a sequence (z,,) of unit vectors such that
Tz, — Ax,|| — 0.
It implies
(Tz, — Atp,x,) — 0
(Txy, ) — A
O

2.6. Theorem. [fT € B(H) is a normal operator, then the following state-
ments hold:

(i) T is self-adjoint if, and only if, SpT C R.

(ii) T is positive if, and only if, SpT C R*.
(iii) T is unitary if, and only if, SpT C {z € C| |z| = 1}.
(iv) T is a projection if, and only if, SpT C {0, 1}.

Proof: We shall prove the implications = (the reverse implications are
more complicated). In case of (i) and (ii), these implications follow from
Corollary 2.5.

Suppose that T is unitary. Then ||T|| = 1 and so |(Tz,z)| < ||z]]* = 1
for all unit vectors x. By Proposition 2.5 Sp T is a subset of the unit disc. If
A € SpT, then A is nonzero and % € SpT~' = SpT*. As T* is unitary we
have that |1 < 1. Hence, [A| = 1.

(iv) is a consequence of proposition 1.7

O



2.7. Proposition. (C*-property) If T' € B(H), then
17| = ||T]]*-

Proof: First observe that ||T'|| = ||77|| (consider e.g. corresponding bilin-
ear forms). For x € H we have

|IT2|* = (T2, Tx) = (T"Tw,x) < |T°T] - ||=||*.

Hence,

T < |77l < |7 - 1T = 1T

0
2.8. Proposition. If T € B(H) is normal, then
r(T) = [T
Proof: First suppose that T' is self-adjoint. Then by the C*-property
IT)* = T°T|| = | 77|
If T" is normal, then
172 = [(T*)T?|| = [(T*T)*|| = |T*T|* = |T|*
(We have used the fact that 7*T is self-adjoint.) Consequently,
172 = 1T,
and in turn ||T%"|| = ||T'||*" for all n. By the spectral radius formula
r(T) = lim |77 = lim | T*"[|'*" = lim || 7| = (|7
0]

Very useful concept in operator theory is that of numerical range of an
operator T' € B(H):

N(T) = {(Tz,2)| ||lz| = 1}.
By a numerical radius of T we mean

n(T) = sup |(Tx,z)|.

llzfl=1

It is clear that, in general, n(T") < ||T|].
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2.9. Proposition. Let T'€ B(H). Then the following statements hold

(i) If T is normal, then
1T = r(T) = n(T).

(i) If T is self-adjoint, then | T|| or —||T|| is in SpT.

Proof: (i) If T is normal, then Sp7T C N(T') by Proposition 2.5. Obvi-
ously,
r(T) <n(T) <||IT|| = r(T)
and so r(T) = n(T).
(i) By working with [|T']|7'T in place of T, we can assume that ||T| = 1.
Then there is a sequence of unit vectors (x,) such that ||Tz,|| — 1. Thanks
to this

(T = T%) 2al* = llwall® + [ T?20]1* = 2R(T*20, 20) < 2 = 2| T 2> — 0

as n — 0o. We see that 1 € Sp7T?. It means that 7'+ I or T — I has no
inverse, for otherwise,

T°—I1=(T+1)(T-1)
would have an inverse, which is not possible. 0

In view of the previous result we can say that the norm of a normal
operator is given by the extreme of the corresponding quadratic form.

3 Algebraic Aspects and Applications

The facts mentioned below follow from Exercises. The set of normal operators
is stable under forming powers and scalar multiples. If 7" is normal, then the
smallest x-subalgebra of B(H) containing 7' is commutative. Any operator
T € B(H) can be written as T'= T} + iT5, where T} and T, are self-adjoint.
Moreover, any self adjoint operator is a difference of two positive operators.
If T is self-adjoint, then T2 is always positive. The converse also holds. (The
proof is more complicated and will be omitted.)

3.1. Proposition. For T € B(H) the following conditions are equivalent:
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(i) T is positive
(ii) T'= A*A for some A € B(H).

(iil) T = S? for some self-adjoint S € B(H). (S is denoted by T"* and
called the square root of T').

If T is self-adjoint, then e’ is unitary. The converse also holds:

3.2. Proposition. For any unitary operator U € B(H) there is a self-
adjoint operator T € B(H) with ||T|| < 2r such that U = €'l

In Physics: t € R — ¢ where H is Hamiltonian (Energy), describes
time development of the system (solution of the Schrédinger equation).

Another important example of a unitary map is the Fourier-Plancherel

transform: .

fe I(R) = flw) = —= / F(yedt

4 Compact Operators

Notation:

B — Banach space

For x € B and ¢ > 0 denote B.(z) = {y| ||z —y| < e}
B1 = Bl(O)

4.1. Definition. A set X in a Banach space B is said to be compact if for
each system U of open subsets of B with X C UpcpyO there is a finite subset
U' C U with X C UpeprO. A set X C B is said to be relatively compact if
its closure, X, is compact.

Related concept to compactness is total boundedness.

4.2. Definition. A set X in a Banach space B is said to be totally bounded
if for each € > 0 there exist zy,...,x, € X such that

4.3. Theorem. X C B is compact if, and only if, X is closed and totally
bounded. X C B 1is relatively compact if, and only if, X is totally bounded.
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Basic facts about compact sets:

If X C B is relatively compact, then for each sequence (z,,) C X there
is a cauchy subsequence (zy, ).

Any relatively compact set is bounded.
Any bounded set in a finite-dimensional space is relatively compact.
Unit ball By is compact if, and only if, dim B < oo.

Let f : By — By be a continuous map between Banach spaces. If
X C By is (relatively) compact, then the image f(X) is (relatively)
compact in Bs.

4.4. Definition. A linear operator 7' : F' — G between Banach spaces F'
and G is called compact if

T(F}) is relatively compact .

Basic facts about compact operators:

T : F — (G is a linear map between Banach spaces.

T is compact if it maps bounded sets to relatively compact sets. In
particular, compact maps are continuous.

If T is compact, then for each bounded sequence (x,) C F there is a
subsequence (z,,) such that (T'z,, ) is convergent.

The identity map on a Banach space B is compact if, and only if,
dim B < o0.

Any bounded operator with finite-dimensional range is compact.

4.5. Corollary. If T': B — B is a compact map, then for each nonzero
reC

dim Ker(T'— A\) < o0
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Proof: T restricted to Ker(7T'— AI) is a nonzero multiple of I. Therefore
T : Ker(T'—\I) — Ker(T — \I) is compact if, and only if, dim Ker(T'—\I) <
00. UJ

Compact operators on Banach spaces have special spectral properties.

4.6. Theorem. LetT' : B — B be a compact operator. Then SpT is count-
able, and each nonzero point of SpT is an eigenvalue and an isolated point of
SpT'. For each nonzero A € Sp T, the space Ker(T'—\I) has finite dimension.

We shall prove this theorem for normal compact operators on Hilbert
spaces later.

Notation:
K(H) ... compact operators acting on a Hilbert space H

F(H) ... finite rank operators acting on a Hilbert space H.
(T € F(H) if, and only if, dimT(H) < o0.)

These classes of operators form a special structure in B(H)
4.7. Definition. An ideal J C B(H) is a linear subspace of B(H ) such that
ST, TrselJ
whenever 7' € J and S € B(H).

4.8. Proposition. (i) F(H) C K(H) and each T € F(H) is a linear com-
bination of the operators of the form
Tey(2) = (z,2)y,

where x,y € H.

(i) F(H) and K(H) are ideals in B(H). Moreover, K(H) is a closed
ideal in B(H).
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Proof: (i) F(H) C K(H) because any finite-dimensional operator is com-
pact.
Take T' € F(H) and let P be the projection of H onto R(T"). Then

P=P+P+--+P,,
where each P; is a one-dimensional projection. As
T=PT

the problem of description of 7" reduces to a rank one operator: dim R(7") = 1.
Suppose R(T') = span{y}, where ||y|| = 1. Then, for each z € H,

Tz=(Tz,y)y = (z,T"y)y

and so T' = Trpey .

(ii) K(H) is a subspace of B(H) because the sum of finitely many totally
bounded sets is totally bounded and scalar multiple of a totally bounded set
is totally bounded as well. If S € B(H), then

T e F(H)= ST, TS € F(H) (linear algebra)
T e K(H) = ST, TS € K(H).

(Last implication is due to the fact that bounded operators map rela-
tively compact sets to relatively compact sets and that continuous image of
a relatively compact set is relatively compact.)

Closedness of K(H):

Suppose that (T,,) € K(H), T,, = T € B(H). Given ¢ > 0 there is ng
such that || T'— T,,|| < €/3 whenever n > ng. There are z1, ...,z € Hy such
that

f)_

k
T, (H1) C | B(Thys, 2
=1

Now for any x € Hy, Tz € T(H;) and

T2 — Thoz| < /3.
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There is 1 < j < k such that

||Tno:l7 - Tnosz < 5/3

and so
[T = Tayl| < (T2 = Togzll + [ Tog = Tagj || + [ Thg; — T
< €/34+¢/3+¢/3=¢.
Hence, T'(H;) is totally bounded. O

4.9. Example. Suppose that (e,)?; is an orthonormal basis of H and T €
B(H) is defined by Te,, = e,,. (T is a diagonal operator.) Set

N
Tz =Y (2. cn)en.
NT 2 n(:v,e Je
Then
(T — Tn)x|| = || EOO l(CL’ en)enl” = EOO . (2, e0)]? < S ]|,
n’ n2’ ~— (N +1)?

Therefore ||T'— Tn|| — 0 as N — oo. By the previous result 7" is compact.
(Observe that the same is true whenever Te, = \,e,, where A\, — 0.)

lco — K(H) — noncommutative ¢

We shall now develop theory of self-adjoint and normal compact opera-
tors.

4.10. Proposition. If T € K(H) is self-adjoint, then ||T|| or —||T|| must
be an eigenvalue of T

Proof: (We know that ||T']| or —||T'|| is in SpT'.)
Without loss of generality assume that | 7|| = 1. Then

1=|T| = sup [(Tz,z)].

llzll=1
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As (Tz,z) is real for all z, there exists a sequence (x,) of unit vectors such
that
(T'zy, x,) — 1( or — — 1 which is the same) .

Using compactness we can pass to a subsequence of (z,), denoted by the
same symbol, such that
Tz, — x € H.

Then
(x,2,) — 1 and so z,, — x.

Now z,, — x,Tx, — x implies Tx = z. 0

4.11. Proposition. LetT € K(H) and (e,)52, be an orthonormal sequence
in H. Then
Te, —0asn — oo.

Proof: Without loss of generality we can assume that
limTe, = x.

Suppose that z # 0 and try to reach a contradiction. Given n we can find
k(n) such that

ITem — || <

Si-

for all m > k(n). Now set
= L (eutmy + expes -+ xmyn)
Un, €k(n Ck(n e €k(n)+n—1)-
\/ﬁ k(n) K(n)+1 Kn) '
Then ||u,|| = 1. As

k(n)4+n—1 k(n)4+n—1 1

I Y Tell>lnall— Y [Tei—z| = nfell - o
i=k(n) 1=k(n)

we obtain
1 1
Tl 2 o (Il - =)
7wl 2 —=[o- (el - —=
= Vn|z]|-1—oc0casn— co.
So T is unbounded - a contradiction. O

16



4.12. Theorem. (Spectral theorem for normal compact operators) Let H
be a separable Hilbert space of infinite dimension and T a normal compact
operator acting on H. Then there is an orthonormal basis (e,)>, of H and
a sequence of complex numbers X\, — 0 such that

Tr = Z An(z,€n)en (2)

forallx € H.

Proof: We show first that T is diagonalizable. By Zorn’s lemma there is
a maximal orthonormal set F of eigenvectors of T'. If L is the closed linear
span of E, then H = L @ L*. Observe that L* is T-invariant. For this
fix x € L+ and take arbitrary y € E. Then there is a scalar A such that
Ty = \y. It gives

(y.Tx) = (T*y,2) = (Ay,x) = 0.

Therefore, T restricts to a compact normal operator acting on L. We are
going to show that L+ = {0}.

First we show that any nonzero point A in the spectrum of 7" is an ein-
genvalue. By Corollary 2.4 there is a sequence (z,,) in H; such that

Tz, — \x, — 0

as n — oo. As T is compact we can, by passing to a subsequence, assume
that

limTz, =vy.
Then Az, — y and so x,, — {. In turn, y # 0,
T
y=I1limTx, = Ty ,
saying that
Ty=\y.

Now, if L+ were nonzero, then 7" would have a nonzero eigenvector in L=,
which is excluded by maximality of E. Hence L+ = {0}.

Summing it up, F is an orthonormal basis of H and so that T is diago-
nalizable. In other words, 7" is of the form (2) for some sequence (\,). That
A, — 0 follows from Proposition 4.11. O
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5 Trace Class and Hilbert-Schmidt Opera-
tors

e Applications to integral equations, Gaussian stochastic processes, uni-
tary representations of locally compact groups, ...

e quantization of ¢*, /2.

5.1. Definition. Let 7' € B(H) be a positive operator and (e,;)>° , an or-
thonormal basis of H. Define

trace T = Z(Ten, en) -

n=1

(It may happen that trace T = cc.)

Remarks: In the matrix representation trace T’ is a sum of diagonal ele-
ments.

5.2. Proposition. (i) For a given positive T € B(H), traceT does not
depend on the choice of an orthonormal basis (ey,).

(i)
trace(Ty + T3) = traceT) + trace Ty
trace(ATy) = AtraceTy,
whenever T1,T5 > 0 and A > 0.

Proof: (i) Fix two orthonormal bases (e;) and (f) and T' € B(H). Then

D (Terer) = Y (Tew, fi)(en, fi) = Y (ex, T i) (ex, i)
h=1 Lh=1 LE=1
= Z (T fi,ex)(fisex) = Z(flanl)
Lh=1 =1

(e}

= Y (Thf).

=1

(ii) obvious
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5.3. Corollary. trace(U*TU) = trace T whenever U is unitary and T > 0.

5.4. Example. IfT is a positive operator acting on an n-dimensional Hilbert
space, then
traceT = A\ +Xa+ -+ Ay,

where \;’s are eigenvalues of T (counted with multiplicity).

5.5. Definition. (i) A positive T' € B(H) is a trace class operator if
trace T’ < oo.

(i)
LY(H) = span{T > 0] traceT < oo}
is the set of trace class operators.
If T € L'(H), then
T=P —P+i(Ps— Py,

where P; > 0 and trace P; < oo. The decomposition is not unique, but the
basic properties of the trace imply that there is a unique linear functional,
denoted by trace, on L'(H) defined by

trace T = trace P, — trace P, + i(trace Py — trace Py) .

Obviously, for every T € L'(H) and every orthonormal basis ey, e, ... we
have

trace T = Z(Ten, en),

n=1

where the series on the right hand side is absolutely convergent.

5.6. Definition. Anoperator T' € B(H ) is called a Hilbert-Schmidt operator
if
trace(T"T) < oo.

L2(H) ... set of all Hilbert-Schmidt operators acting on H.

Observe that .
TeL’(H) < ) |Ten|* < oo

n=1

for any orthonormal basis (e,)2, of H.
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5.7. Proposition. L*(H) is a self-adjoint ideal in B(H).

Proof: Let A, B € L?(H).
parallelogram law:

(A+ B)(A+B)+(A—B)*(A—B)=2A"A+2B*B.
It implies that
0<(A+B)"(A+B) <24"A+2B"B.
Consequently,
trace[(A + B)"(A+ B)| < 2trace A"A 4 2trace B*B < o0,

and so A+ B € L?(H). Hence L*(H) is a subspace of B(H).
We shall now prove that trace A*A = trace AA* (this is of independent im-
portance). For this fix two orthonormal basis (e,) and (fy) of H. Then

Do lAedl? = D (A, i)l
n=1

n,k=1
= D len A )P =D (A frren)?
n,k=1 n,k=1

= D IAfIP
k=1
In other words, £L*(H) is self-adjoint. If B € B(H) and A € L2(H), then
D 1BAe, | < |BIP Y [l Aea|* < oo
n=1 n=1
So L?(H) is a left ideal and by self-adjointeness it is an ideal.
5.8. Proposition.

L*(H) C K(H).
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Proof: F(H) C K(H). For any x € Hy and any T € B(H)

|ITz|* <) || Te,|* = trace T*T,

n=1

where (e,,)22; is an orthonormal basis containing x. This means that
|T||* < trace T*T .

Suppose now that 7' € £?(H). Fix an orthonormal basis (e,)> ;. Let Py be
the orthogonal projection onto span{ey,...,ey}. Put Fy = TPy. Then

|T— Fyl|f* < trace((I—Px)T*T(I-Py)) = Y [|Ten||* — oo for N — oo.
n=N+1
Therefore T € K(H). O

5.9. Corollary. A normal Hilbert-Schmidt operator T is diagonalizable and
for its sequence (\,) of eigenvalues we have

o0

D Aal? < o0

n=1

A natural inner product can be introduced on L£*(H).

For A, B € L*(H) define

(A,B)y = Y (B*Aey,e,) =Y (Aey, Bey).
n=1 n=1

O 1(Aen, Be)l <> [1(Aen]* > (Be|* < 00.)
n=1 n=1 n=1

Note that ||A]|z = trace A*A.
It can be proved that (L*(H), (+,-)2) is a Hilbert space.
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Hilbert-Schmidt integral operator:
(X, ) .... o-finite measure space.

k(r,y) € H=L*(X x X, x p1).
Define an operator T on L?(X, i) by

T6(0) = [ Ko y)el)dnty). ®)
b
This definition is correct because k(z,-) € L*(X, u) for a.a. r € X.

Another application of Fubini’s theorem implies that for &, v € L?(X, p)

/X|T5($)||V($)|dﬂ($)§/ |, )€ () [ ()| dpa () dpay) < [[EIIEN ]

XxX

Hence T' € B(L*(X, p)) and ||T]| < ||k||.

Let us now compute the trace of T*T. Choose an orthonormal basis
(€)%, of L*(X, ). Then

Umn (2, y) = en(T)en(y) m,n=12,....

form an orthonormal basis of L*(X x X, u x ). We observe

(Tem, ) = /X Tem(@)en(@)d(z) = /X ) e () (1))
= (k, tUmn) -

In turn,

trace T*T = Z ’(Temyen)P: Z ’(kvumn)|2: HkHQ

m,n=1 m,n=1

We summarize the results of this discussion in the following proposition:
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5.10. Proposition. Let (X, u) be a o-finite measure space. For every func-

tion k € L*(X x X, pu X p) there is a unique bounded operator Ty, on L*(X, 1)
satisfying

Te(x) = /X Ko n)ewduly) €€ L(X,p).

Then Ty is a Hilbert-Schmidt operator with the Hilbert-Schmidt norm ||k||.
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