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1 Basic Definitions and Examples

We shall continue to denote by B(H) the set of all bounded operators acting
on a complex Hilbert space H. For T ∈ B(H) let R(T ) = T (H). I will
denote the identity operator acting on H.

Algebraic properties inside B(H) endowed with the ∗ operation lead to
striking analytic spectral properties.

numbers functions operators
complex, zz = zz complex normal, T ∗T = TT ∗.

real, z = z real self-adjoint, T = T ∗.
positive, zz positive positive, T ∗T

complex unit into unit circle unitary, T ∗T = TT ∗ = I
{0, 1} indicator function projection, T = T 2 = T ∗

Recall that there is a bijection between bounded operators on H and
bounded conjugate linear bilinear forms on H given by

T ∈ B(H) → BT , where BT (x, y) = (Tx, y) x, y ∈ H .

In fact, there is a bijection between operators acting on H and quadratic
forms on H given by the assignment

T ∈ B(H) → QT , where QT (x) = (Tx, x) x ∈ H .

This is the content of the following proposition.

1.1. Proposition. For T1, T2 ∈ B(H) we have that QT1 = QT2 if, and only
if, T1 = T2.

Proof: Polarization identity for T ∈ B(H) gives us

(Tx, y) = (T (x + y), x + y)− (T (x− y), x− y)

+i(T (x + iy), x + iy)− i(T (x− iy), x− iy) .

Consequently, (T1x, x) = (T2x, x) for all x ∈ H implies that BT1 = BT2 and
so T1 = T2. �
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1.2. Definition. An operator T ∈ B(H) is called

(i) normal if TT ∗ = T ∗T .

(ii) self-adjoint if T = T ∗.

(iii) positive if (Tx, x) ≥ 0 for all x ∈ H.

(iv) unitary if T ∗T = TT ∗ = I

(v) projection if T = T 2 = T ∗.

1.3. Proposition. Let T ∈ B(H). Then

(i) T is normal if, and only if, ‖Tx‖ = ‖T ∗x‖ for all x ∈ H.

(ii) T is self-adjoint if, and only if, (Tx, x) is real for all x ∈ H.

(iii) T is unitary if, and only if, T is an inner product preserving surjection.

Proof: (i) For all x ∈ H we have

(T ∗Tx, x)− (TT ∗x, x) = (Tx, Tx)− (T ∗x, T ∗x) = ‖Tx‖2 − ‖T ∗x‖2 .

This, together with Proposition 1.1, implies (i).
(ii) For all x ∈ H we have

(Tx, x)− (T ∗x, x) = (Tx, x)− (x, Tx) = 2i=(Tx, x).

It means that T = T ∗ if, and only if, (Tx, x) is real for all x ∈ H.
(iii) If T is unitary, then, for x, y ∈ H,

(Tx, Ty) = (x, T ∗Tx) = (x, x) .

If x ∈ R(T )⊥, then
0 = (TT ∗x, x) = (x, x)

and so x = 0. Hence, T is a surjection which preserves the inner product.
On the other hand, if T is an inner product preserving surjection, then T
has an inverse and

(T ∗Tx, x) = (Tx, Tx) = (x, x) ,

which implies that T−1 = T ∗ and so T ∗T = TT ∗ = I.
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1.4. Example. (Discrete diagonal) Let H be a Hilbert space with orthonor-
mal basis (en)∞n=1. Let g : N → C be a bounded function. Define

Tx =
∞∑

n=1

g(n) (x, en)en .

(This is a diagonal operator uniquely given by Ten = g(n) en.)
Let us observe that

‖T‖ = sup
n∈N

|g(n)| .

As (Ten, en) = (en, g(n)en) we see that

T ∗x =
∞∑

n=1

g(n) (x, en)en

for all x ∈ H. All diagonal operators are normal. In a certain sense the
converse holds - see below.

• T is self-adjoint ⇐⇒ g(n) = g(n) for all n ∈ N (g is real).

• T is positive ⇐⇒ (Tx, x) ≥ 0 for all x ⇐⇒
∑

n g(n)|(x, en)|2 ≥ 0 for all
x ∈ H. But this is equivalent to g(n) ≥ 0 for all n ∈ N.

• T is unitary ⇐⇒ T ∗T = TT ∗ = I.
But T ∗Tx =

∑∞
n=1 g(n)g(n)(x, en) en =

∑∞
n=1 |g(n)|2 (x, en)en.

In other words, T is unitary ⇐⇒ |g(n)| = 1 for all n.

Now we shall deal with a generalization of this example to cover also
operators with continuous spectrum.

1.5. Example. Let (X, µ) be a σ-finite measure space. For a measurable
function, f , on X define

‖f‖∞ = inf{K ≥ 0 | |f(x)| ≤ K for a.a. x ∈ X}
= sup{L ≥ 0 | |f | > L on some set of nonzero measure} .

L∞(X,µ) ... space of all measurable function with finite ‖ · ‖∞. Put H =
L2(X, µ) and fix f ∈ L∞(X, µ).
Define multiplication operator Mf acting on H by

Mf (g) = f g , g ∈ L2(X, µ) .
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Observe that∫
X

|Mfg(x)|2dµ(x) =

∫
X

|f(x)|2|g(x)|2dµ(x) ≤ ‖f‖2
∞‖g‖2 .

It implies ‖Mf‖ ≤ ‖f‖∞.

On the other hand, if 0 < α < ‖f‖∞, then µ{x | |f(x)| > α} > 0 and so
there is a set Y ⊂ {x | |f(x)| > α} of finite nonzero measure. Then, for the
characteristic function χY , of the set Y

‖Mf (χY )‖2 =

∫
Y

|f(x)|2dµ(x) > α2µ(Y ) = α2‖χY ‖2 .

Therefore, ‖Mf‖ ≥ α. In summary,

‖Mf‖ = ‖f∞‖ .

We have M∗
f = Mf and so M∗

f Mf = MfM
∗
f = M|f |2 . Notably, Mf is

normal.

Deep spectral theorem says that all normal operators arise in
this way !

• Mf is self-adjoint ⇐⇒ f is real:

‖Mf −M∗
f ‖ = ‖Mf−f̄‖ = ‖f − f̄‖∞ .

• Mf is positive ⇐⇒ f ≥ 0 a.e. :

(Mfg, g) =

∫
X

f(x) |g(x)|2dµ(x) ,

and so Mf is positive if, and only if,
∫

Y
f(x)dµ(x) ≥ 0 for each measurable

set Y , which is equivalent to f ≥ 0 a.e.

• Mf is unitary ⇐⇒ |f | = 1 a.e. :

‖I −MfM
∗
f ‖ = ‖M(1−|f |2)‖ = ‖1− |f |2‖∞ .
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• Mf is a projection ⇐⇒ f = χY for some measurable Y :
f is real and

‖Mf −M2
f ‖ = ‖Mf−f2‖ = ‖f − f 2‖∞ .

Consequently, f is 0 or 1 a.e.

Note that Mf may have no eigenvalue: Consider L∞[0, 1] and f(x) = x.
Let λ ∈ C.

xg(x) = λg(x) for almost all x implies (x− λ)g(x) = 0 and so g = 0 a.e. .

Matrix point of view: If H is a Hilbert space with an orthonormal basis
(en), then T ∈ B(H) is determined by an infinite matrix

((Tem, en))m,n .

T ∗ corresponds to adjoint matrix. In Example 1.4 we have seen T whose
matrix is diagonal.

1.6. Example. Let x, y ∈ H be distinct. Define

Tx,y(z) = (z, x) y z ∈ H .

For u, v ∈ H we obtain

(Tx,yu, v) = (u, x)(y, v) = (u, (v, y)x) = (u, Ty,x(v)) ,

implying
T ∗

x,y = Ty,x .

Now
Tx,yT

∗
x,y(z) = (x, x)(z, y)y = ‖x‖2Ty,y(z) .

By exchanging the roles of x and y, we obtain

T ∗
x,yTx,y = ‖y‖2Tx,x .

(If x and y are unit vectors, then the map Tx,y is called a partial isometry
exchanging one dimensional projections onto span of x and span of y, respec-
tively. This is important for the structure theory of projections – we have to
deal with non-normal operators!)
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1.7. Proposition. Any projection P ∈ B(H) is an orthogonal projection of
H onto P (H).

Proof: Put M = P (H). M is closed because P 2 = P implies that
P (H) = {x ∈ H | Px = x}. We can write H = M ⊕M⊥.
If y ∈ M⊥, then (x, Py) = (Px, y) = 0 for each x ∈ H and so Py = 0.
Therefore, if z = x + y, where x ∈ M and y ∈ M⊥, then

P (x + y) = x .

2 Spectral Theory of Normal Operators

Recall that for T ∈ B(H) the spectrum, Sp T , is a subset of C defined by

λ ∈ Sp T ⇐⇒ (T − λI) has not an inverse in B(H) .

Point spectrum

Spp T = σp(T ) = {λ ∈ C | (T − λI) is not one-to one .}

In other words, for each λ ∈ σp(T ) there is a nonzero y in H such that

Ty = λ y .

Vector y is called an eigenvector.

Spectral radius r(T ) = sup{|λ| | λ ∈ Sp(T )}.

Spectrum is always a compact subset of C.

2.1. Proposition. Let T ∈ B(H) be normal. Then the following statements
hold:

(i) If Tx = λ x for some λ ∈ C and x ∈ H, then T ∗x = λx.

(ii) If λ1 6= λ2 are complex numbers, then

Ker(T − λ1I) ⊥ Ker(T − λ2I) .
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Proof (i) By normality of T , for each x ∈ H,

‖(T − λI)x‖ = ‖(T − λI)∗x‖ = ‖(T ∗ − λ̄ I)x‖ .

It implies (i).
(ii) Suppose that x, y ∈ H and λ1 6= λ2 are in C such that Tx = λ1 x,
T y = λ2 y. Then

λ1(x, y) = (Tx, y) = (x, T ∗y) = (x, λ2y) = λ2(x, y) .

Since λ1 6= λ2, (x, y) = 0. �

Spectrum of a normal operator has a simpler structure than in general
case.

2.2. Proposition. Let T ∈ B(H) be a normal operator. Then

λ 6∈ Sp T ⇐⇒ there is c > 0 such that

‖(T − λI)x‖ > c‖x‖ for all x ∈ H . (1)

Proof: Without loss of generality assume that λ = 0. Suppose that there
is c > 0 satisfying the condition (1). Then T is one-to-one. It follows from
(1) that range T (H) is complete and thereby closed in H. It remains to prove
that R(T ) = H. Choose x ∈ R(T )⊥. Then

0 = (x, TT ∗x) = (x, T ∗Tx) = (Tx, Tx) = ‖Tx‖2 ≥ c2‖x‖2 .

In other words, x = 0 and R(T ) = H. So (1) implies 0 6∈ Sp T . The reverse
implication is clear. �

2.3. Corollary. If T ∈ B(H) is normal and λ ∈ Sp T \ σp(T ),
then (T − λI)(H) is not closed.

Proof: If T − λI is one-to-one and (T − λI)(H) is closed, then, by the
Inverse Mapping Theorem, there is a continuous linear map
S : (T − λI)(H) → H such that S(T − λI)x = x for all x ∈ H. It means
that ‖x‖ ≤ ‖S‖‖(T − λI)x‖. As ‖S‖ 6= 0, we see that

‖(T − λI)x‖ ≥ 1

‖S‖
‖x‖ .

In view of Proposition 2.2, λ 6∈ Sp T. �
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2.4. Corollary. (Approximate Spectrum) If T ∈ B(H) is normal, then λ ∈
Sp T if, and only if, there is a sequence (xn) of unit vectors such that
‖(T − λI)xn‖ → 0 as n →∞.

Proof: By Proposition 2.2 λ ∈ Sp T ⇐⇒ inf‖x‖=1 ‖(T − λI)x‖ = 0. �

Spectrum of a normal operator is equal to approximate point spectrum.

2.5. Corollary. If T ∈ B(H) is normal, then

Sp T ⊂ {(Tx, x) | ‖x‖ = 1} .

Proof: If λ ∈ Sp T then there is a sequence (xn) of unit vectors such that

‖T xn − λxn‖ → 0 .

It implies
(Txn − λxn, xn) → 0

(Txn, xn) → λ .

�

2.6. Theorem. If T ∈ B(H) is a normal operator, then the following state-
ments hold:

(i) T is self-adjoint if, and only if, Sp T ⊂ R.

(ii) T is positive if, and only if, Sp T ⊂ R+.

(iii) T is unitary if, and only if, Sp T ⊂ {z ∈ C | |z| = 1}.

(iv) T is a projection if, and only if, Sp T ⊂ {0, 1}.

Proof: We shall prove the implications =⇒ (the reverse implications are
more complicated). In case of (i) and (ii), these implications follow from
Corollary 2.5.

Suppose that T is unitary. Then ‖T‖ = 1 and so |(Tx, x)| ≤ ‖x‖2 = 1
for all unit vectors x. By Proposition 2.5 Sp T is a subset of the unit disc. If
λ ∈ Sp T , then λ is nonzero and 1

λ
∈ Sp T−1 = Sp T ∗. As T ∗ is unitary we

have that | 1
λ
| ≤ 1. Hence, |λ| = 1.

(iv) is a consequence of proposition 1.7
�
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2.7. Proposition. (C∗-property) If T ∈ B(H), then

‖T ∗T‖ = ‖T‖2 .

Proof: First observe that ‖T‖ = ‖T ∗‖ (consider e.g. corresponding bilin-
ear forms). For x ∈ H we have

‖Tx‖2 = (Tx, Tx) = (T ∗Tx, x) ≤ ‖T ∗T‖ · ‖x‖2 .

Hence,
‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖ · ‖T‖ = ‖T‖2 .

�

2.8. Proposition. If T ∈ B(H) is normal, then

r(T ) = ‖T‖ .

Proof: First suppose that T is self-adjoint. Then by the C∗-property

‖T‖2 = ‖T ∗T‖ = ‖T 2‖ .

If T is normal, then

‖T 2‖2 = ‖(T 2)∗T 2‖ = ‖(T ∗T )2‖ = ‖T ∗T‖2 = ‖T‖4 .

(We have used the fact that T ∗T is self-adjoint.) Consequently,

‖T 2‖ = ‖T‖2 ,

and in turn ‖T 2n‖ = ‖T‖2n
for all n. By the spectral radius formula

r(T ) = lim
n
‖T n‖1/n = lim

n
‖T 2n‖1/2n

= lim
n
‖T‖ = ‖T‖ .

�
Very useful concept in operator theory is that of numerical range of an

operator T ∈ B(H):

N(T ) = {(Tx, x) | ‖x‖ = 1} .

By a numerical radius of T we mean

n(T ) = sup
‖x‖=1

|(Tx, x)| .

It is clear that, in general, n(T ) ≤ ‖T‖.
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2.9. Proposition. Let T ∈ B(H). Then the following statements hold

(i) If T is normal, then
‖T‖ = r(T ) = n(T ) .

(ii) If T is self-adjoint, then ‖T‖ or −‖T‖ is in Sp T .

Proof: (i) If T is normal, then Sp T ⊂ N(T ) by Proposition 2.5. Obvi-
ously,

r(T ) ≤ n(T ) ≤ ‖T‖ = r(T )

and so r(T ) = n(T ).
(ii) By working with ‖T‖−1T in place of T , we can assume that ‖T‖ = 1.
Then there is a sequence of unit vectors (xn) such that ‖Txn‖ → 1. Thanks
to this

‖(I − T 2) xn‖2 = ‖xn‖2 + ‖T 2xn‖2 − 2<(T 2xn, xn) ≤ 2− 2‖T xn‖2 → 0

as n → ∞. We see that 1 ∈ Sp T 2. It means that T + I or T − I has no
inverse, for otherwise,

T 2 − I = (T + I)(T − I)

would have an inverse, which is not possible. �

In view of the previous result we can say that the norm of a normal
operator is given by the extreme of the corresponding quadratic form.

3 Algebraic Aspects and Applications

The facts mentioned below follow from Exercises. The set of normal operators
is stable under forming powers and scalar multiples. If T is normal, then the
smallest ∗-subalgebra of B(H) containing T is commutative. Any operator
T ∈ B(H) can be written as T = T1 + iT2, where T1 and T2 are self-adjoint.
Moreover, any self adjoint operator is a difference of two positive operators.
If T is self-adjoint, then T 2 is always positive. The converse also holds. (The
proof is more complicated and will be omitted.)

3.1. Proposition. For T ∈ B(H) the following conditions are equivalent:
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(i) T is positive

(ii) T = A∗A for some A ∈ B(H).

(iii) T = S2 for some self-adjoint S ∈ B(H). (S is denoted by T 1/2 and
called the square root of T ).

If T is self-adjoint, then eiT is unitary. The converse also holds:

3.2. Proposition. For any unitary operator U ∈ B(H) there is a self-
adjoint operator T ∈ B(H) with ‖T‖ ≤ 2π such that U = eiT .

In Physics: t ∈ R → eitH , where H is Hamiltonian (Energy), describes
time development of the system (solution of the Schrödinger equation).

Another important example of a unitary map is the Fourier-Plancherel
transform:

f ∈ L2(R) → f̂(ω) =
1√
2 π

∫
R

f(t)e−itωdt .

4 Compact Operators

Notation:
B – Banach space
For x ∈ B and ε > 0 denote Bε(x) = {y | ‖x− y‖ ≤ ε}
B1 = B1(0).

4.1. Definition. A set X in a Banach space B is said to be compact if for
each system U of open subsets of B with X ⊂ ∪O∈UO there is a finite subset
U ′ ⊂ U with X ⊂ ∪O∈U ′O. A set X ⊂ B is said to be relatively compact if
its closure, X, is compact.

Related concept to compactness is total boundedness.

4.2. Definition. A set X in a Banach space B is said to be totally bounded
if for each ε > 0 there exist x1, . . . , xn ∈ X such that

X ⊂ ∪n
i=1Bε(xi) .

4.3. Theorem. X ⊂ B is compact if, and only if, X is closed and totally
bounded. X ⊂ B is relatively compact if, and only if, X is totally bounded.
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Basic facts about compact sets:

• If X ⊂ B is relatively compact, then for each sequence (xn) ⊂ X there
is a cauchy subsequence (xnk

).

• Any relatively compact set is bounded.

• Any bounded set in a finite-dimensional space is relatively compact.

• Unit ball B1 is compact if, and only if, dim B < ∞.

• Let f : B1 → B2 be a continuous map between Banach spaces. If
X ⊂ B1 is (relatively) compact, then the image f(X) is (relatively)
compact in B2.

4.4. Definition. A linear operator T : F → G between Banach spaces F
and G is called compact if

T (F1) is relatively compact .

Basic facts about compact operators:

T : F → G is a linear map between Banach spaces.

• T is compact if it maps bounded sets to relatively compact sets. In
particular, compact maps are continuous.

• If T is compact, then for each bounded sequence (xn) ⊂ F there is a
subsequence (xnk

) such that (Txnk
) is convergent.

• The identity map on a Banach space B is compact if, and only if,
dim B < ∞.

• Any bounded operator with finite-dimensional range is compact.

4.5. Corollary. If T : B → B is a compact map, then for each nonzero
λ ∈ C

dim Ker(T − λI) < ∞
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Proof: T restricted to Ker(T − λI) is a nonzero multiple of I. Therefore
T : Ker(T −λI) → Ker(T −λI) is compact if, and only if, dim Ker(T −λI) <
∞. �

Compact operators on Banach spaces have special spectral properties.

4.6. Theorem. Let T : B → B be a compact operator. Then Sp T is count-
able, and each nonzero point of Sp T is an eigenvalue and an isolated point of
Sp T . For each nonzero λ ∈ Sp T , the space Ker(T−λI) has finite dimension.

We shall prove this theorem for normal compact operators on Hilbert
spaces later.

Notation:

K(H) ... compact operators acting on a Hilbert space H

F (H) ... finite rank operators acting on a Hilbert space H.
(T ∈ F (H) if, and only if, dim T (H) < ∞.)

These classes of operators form a special structure in B(H)

4.7. Definition. An ideal J ⊂ B(H) is a linear subspace of B(H) such that

S T, T S ∈ J

whenever T ∈ J and S ∈ B(H).

4.8. Proposition. (i) F (H) ⊂ K(H) and each T ∈ F (H) is a linear com-
bination of the operators of the form

Tx,y(z) = (z, x) y ,

where x, y ∈ H.

(ii) F (H) and K(H) are ideals in B(H). Moreover, K(H) is a closed
ideal in B(H).
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Proof: (i) F (H) ⊂ K(H) because any finite-dimensional operator is com-
pact.

Take T ∈ F (H) and let P be the projection of H onto R(T ). Then

P = P1 + P2 + · · ·+ Pn ,

where each Pi is a one-dimensional projection. As

T = PT

the problem of description of T reduces to a rank one operator: dim R(T ) = 1.
Suppose R(T ) = span{y}, where ‖y‖ = 1. Then, for each z ∈ H,

Tz = (Tz, y)y = (z, T ∗y)y

and so T = TT ∗y,y .

(ii) K(H) is a subspace of B(H) because the sum of finitely many totally
bounded sets is totally bounded and scalar multiple of a totally bounded set
is totally bounded as well. If S ∈ B(H), then

T ∈ F (H) =⇒ ST, TS ∈ F (H) (linear algebra)

T ∈ K(H) =⇒ ST, TS ∈ K(H).

(Last implication is due to the fact that bounded operators map rela-
tively compact sets to relatively compact sets and that continuous image of
a relatively compact set is relatively compact.)

Closedness of K(H):

Suppose that (Tn) ⊂ K(H), Tn → T ∈ B(H). Given ε > 0 there is n0

such that ‖T − Tn‖ < ε/3 whenever n ≥ n0. There are x1, . . . , xk ∈ H1 such
that

Tn0(H1) ⊂
k⋃

i=1

B(Tn0xi,
ε

3
) .

Now for any x ∈ H1, Tx ∈ T (H1) and

‖Tx− Tn0x‖ ≤ ε/3 .
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There is 1 ≤ j ≤ k such that

‖Tn0x− Tn0xj‖ ≤ ε/3

and so

‖Tx− Txj‖ ≤ ‖Tx− Tn0x‖+ ‖Tn0x− Tn0xj‖+ ‖Tn0xj − Txj‖
≤ ε/3 + ε/3 + ε/3 = ε.

Hence, T (H1) is totally bounded. �

4.9. Example. Suppose that (en)∞n=1 is an orthonormal basis of H and T ∈
B(H) is defined by Ten = 1

n
en. (T is a diagonal operator.) Set

TNx =
N∑

n=1

1

n
(x, en)en.

Then

‖(T − TN)x‖2 = ‖
∞∑

n=N+1

1

n
(x, en)en‖2 =

∞∑
n=N+1

1

n2
|(x, en)|2 ≤ 1

(N + 1)2
‖x‖2.

Therefore ‖T − TN‖ → 0 as N → ∞. By the previous result T is compact.
(Observe that the same is true whenever Ten = λnen, where λn → 0.)

c0 ↪→ K(H) – noncommutative c0.

We shall now develop theory of self-adjoint and normal compact opera-
tors.

4.10. Proposition. If T ∈ K(H) is self-adjoint, then ‖T‖ or −‖T‖ must
be an eigenvalue of T .

Proof: (We know that ‖T‖ or −‖T‖ is in Sp T .)
Without loss of generality assume that ‖T‖ = 1. Then

1 = ‖T‖ = sup
‖x‖=1

|(Tx, x)| .
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As (Tx, x) is real for all x, there exists a sequence (xn) of unit vectors such
that

(Txn, xn) → 1( or →− 1 which is the same) .

Using compactness we can pass to a subsequence of (xn), denoted by the
same symbol, such that

Txn → x ∈ H1 .

Then
(x, xn) → 1 and so xn → x .

Now xn → x, Txn → x implies Tx = x. �

4.11. Proposition. Let T ∈ K(H) and (en)∞n=1 be an orthonormal sequence
in H. Then

Ten → 0 as n →∞ .

Proof: Without loss of generality we can assume that

lim
n

Ten = x .

Suppose that x 6= 0 and try to reach a contradiction. Given n we can find
k(n) such that

‖Tem − x‖ ≤ 1√
n

for all m ≥ k(n). Now set

un =
1√
n

(ek(n) + ek(n)+1 + · · ·+ ek(n)+n−1).

Then ‖un‖ = 1. As

‖
k(n)+n−1∑

i=k(n)

Tei‖ ≥ ‖nx‖ −
k(n)+n−1∑

i=k(n)

‖Tei − x‖ ≥ n‖x‖ − n
1√
n

we obtain

‖Tun‖ ≥ 1√
n

[
n ·

(
‖x‖ − 1√

n

)]
=

√
n‖x‖ − 1 →∞ as n →∞ .

So T is unbounded - a contradiction. �
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4.12. Theorem. (Spectral theorem for normal compact operators) Let H
be a separable Hilbert space of infinite dimension and T a normal compact
operator acting on H. Then there is an orthonormal basis (en)∞n=1 of H and
a sequence of complex numbers λn → 0 such that

Tx =
∞∑

n=1

λn(x, en)en (2)

for all x ∈ H.

Proof: We show first that T is diagonalizable. By Zorn’s lemma there is
a maximal orthonormal set E of eigenvectors of T . If L is the closed linear
span of E, then H = L ⊕ L⊥. Observe that L⊥ is T -invariant. For this
fix x ∈ L⊥ and take arbitrary y ∈ E. Then there is a scalar λ such that
Ty = λy. It gives

(y, Tx) = (T ∗y, x) = (λy, x) = 0 .

Therefore, T restricts to a compact normal operator acting on L⊥. We are
going to show that L⊥ = {0}.

First we show that any nonzero point λ in the spectrum of T is an ein-
genvalue. By Corollary 2.4 there is a sequence (xn) in H1 such that

Txn − λxn → 0

as n → ∞. As T is compact we can, by passing to a subsequence, assume
that

lim
n

Txn = y .

Then λxn → y and so xn → y
λ
. In turn, y 6= 0,

y = lim
n

Txn =
Ty

λ
,

saying that
Ty = λy .

Now, if L⊥ were nonzero, then T would have a nonzero eigenvector in L⊥,
which is excluded by maximality of E. Hence L⊥ = {0}.

Summing it up, E is an orthonormal basis of H and so that T is diago-
nalizable. In other words, T is of the form (2) for some sequence (λn). That
λn → 0 follows from Proposition 4.11. �
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5 Trace Class and Hilbert-Schmidt Opera-

tors

• Applications to integral equations, Gaussian stochastic processes, uni-
tary representations of locally compact groups, ...

• quantization of `1, `2.

5.1. Definition. Let T ∈ B(H) be a positive operator and (en)∞n=1 an or-
thonormal basis of H. Define

trace T =
∞∑

n=1

(Ten, en) .

(It may happen that trace T = ∞.)

Remarks: In the matrix representation trace T is a sum of diagonal ele-
ments.

5.2. Proposition. (i) For a given positive T ∈ B(H), trace T does not
depend on the choice of an orthonormal basis (en).

(ii)

trace(T1 + T2) = trace T1 + trace T2

trace(λT1) = λ trace T1 ,

whenever T1, T2 ≥ 0 and λ ≥ 0.

Proof: (i) Fix two orthonormal bases (ek) and (fk) and T ∈ B(H). Then

∞∑
k=1

(Tek, ek) =
∞∑

l,k=1

(Tek, fl)(ek, fl) =
∞∑

l,k=1

(ek, T fl)(ek, fl)

=
∞∑

l,k=1

(Tfl, ek)(fl, ek) =
∞∑
l=1

(fl, T fl)

=
∞∑
l=1

(Tfl, fl) .

(ii) obvious
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5.3. Corollary. trace(U∗TU) = trace T whenever U is unitary and T ≥ 0.

5.4. Example. If T is a positive operator acting on an n-dimensional Hilbert
space, then

trace T = λ1 + λ2 + · · ·+ λn ,

where λi’s are eigenvalues of T (counted with multiplicity).

5.5. Definition. (i) A positive T ∈ B(H) is a trace class operator if
trace T < ∞.

(ii)

L1(H) = span{T ≥ 0 | trace T < ∞}

is the set of trace class operators.

If T ∈ L1(H), then

T = P1 − P2 + i(P3 − P4) ,

where Pi ≥ 0 and trace Pi < ∞. The decomposition is not unique, but the
basic properties of the trace imply that there is a unique linear functional,
denoted by trace, on L1(H) defined by

trace T = trace P1 − trace P2 + i(trace P3 − trace P4) .

Obviously, for every T ∈ L1(H) and every orthonormal basis e1, e2, . . . we
have

trace T =
∞∑

n=1

(Ten, en) ,

where the series on the right hand side is absolutely convergent.

5.6. Definition. An operator T ∈ B(H) is called a Hilbert-Schmidt operator
if

trace(T ∗T ) < ∞ .

L2(H) ..... set of all Hilbert-Schmidt operators acting on H.

Observe that

T ∈ L2(H) ⇐⇒
∞∑

n=1

‖Ten‖2 < ∞

for any orthonormal basis (en)∞n=1 of H.
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5.7. Proposition. L2(H) is a self-adjoint ideal in B(H).

Proof: Let A, B ∈ L2(H).
parallelogram law:

(A + B)∗(A + B) + (A−B)∗(A−B) = 2 A∗A + 2 B∗B .

It implies that

0 ≤ (A + B)∗(A + B) ≤ 2A∗A + 2B∗B .

Consequently,

trace[(A + B)∗(A + B)] ≤ 2 trace A∗A + 2 trace B∗B < ∞ ,

and so A + B ∈ L2(H). Hence L2(H) is a subspace of B(H).
We shall now prove that trace A∗A = trace AA∗ (this is of independent im-
portance). For this fix two orthonormal basis (en) and (fk) of H. Then

∞∑
n=1

‖Aen‖2 =
∞∑

n,k=1

|(Aen, fk)|2

=
∞∑

n,k=1

|(en, A
∗fk)|2 =

∞∑
n,k=1

|(A∗fk, en)|2

=
∞∑

k=1

‖A∗fk‖2 .

In other words, L2(H) is self-adjoint. If B ∈ B(H) and A ∈ L2(H), then

∞∑
n=1

‖BAen‖2 ≤ ‖B‖2

∞∑
n=1

‖Aen‖2 < ∞ .

So L2(H) is a left ideal and by self-adjointeness it is an ideal.

5.8. Proposition.

L2(H) ⊂ K(H) .
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Proof: F (H) ⊂ K(H). For any x ∈ H1 and any T ∈ B(H)

‖Tx‖2 ≤
∞∑

n=1

‖Ten‖2 = trace T ∗T ,

where (en)∞n=1 is an orthonormal basis containing x. This means that

‖T‖2 ≤ trace T ∗T .

Suppose now that T ∈ L2(H). Fix an orthonormal basis (en)∞n=1. Let PN be
the orthogonal projection onto span{e1, . . . , eN}. Put FN = TPN . Then

‖T−FN‖2 ≤ trace((I−PN)T ∗T (I−PN)) =
∞∑

n=N+1

‖Ten‖2 →∞ for N →∞ .

Therefore T ∈ K(H). �

5.9. Corollary. A normal Hilbert-Schmidt operator T is diagonalizable and
for its sequence (λn) of eigenvalues we have

∞∑
n=1

|λn|2 < ∞ .

A natural inner product can be introduced on L2(H).

For A, B ∈ L2(H) define

(A, B)2 =
∞∑

n=1

(B∗Aen, en) =
∞∑

n=1

(Aen, Ben) .

(
∞∑

n=1

|(Aen, Ben)| ≤
∞∑

n=1

‖(Aen‖2

∞∑
n=1

‖(Ben‖2 < ∞ .)

Note that ‖A‖2 = trace A∗A.
It can be proved that (L2(H), (·, ·)2) is a Hilbert space.
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Hilbert-Schmidt integral operator:

(X,µ) .... σ-finite measure space.

k(x, y) ∈ H = L2(X ×X,µ× µ) .

Define an operator T on L2(X, µ) by

Tξ(x) =

∫
X

k(x, y)ξ(y)dµ(y) . (3)

This definition is correct because k(x, ·) ∈ L2(X, µ) for a.a. x ∈ X.

Another application of Fubini’s theorem implies that for ξ, ν ∈ L2(X, µ)∫
X

|Tξ(x)||ν(x)|dµ(x) ≤
∫

X×X

|k(x, y)||ξ(x)||ν(x)|dµ(x)dµ(y) ≤ ‖k‖‖ξ‖ ‖ν‖

Hence T ∈ B(L2(X, µ)) and ‖T‖ ≤ ‖k‖.

Let us now compute the trace of T ∗T . Choose an orthonormal basis
(en)∞n=1 of L2(X,µ). Then

umn(x, y) = en(x)em(y) m, n = 1, 2, . . . .

form an orthonormal basis of L2(X ×X, µ× µ). We observe

(Tem, en) =

∫
X

Tem(x)en(x)dµ(x) =

∫
X×X

k(x, y)en(x)em(y)dµ(y)dµ(x)

= (k, umn) .

In turn,

trace T ∗T =
∞∑

m,n=1

|(Tem, en)|2 =
∞∑

m,n=1

|(k, umn)|2 = ‖k‖2 .

We summarize the results of this discussion in the following proposition:
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5.10. Proposition. Let (X, µ) be a σ-finite measure space. For every func-
tion k ∈ L2(X×X,µ×µ) there is a unique bounded operator Tk on L2(X, µ)
satisfying

Tξ(x) =

∫
X

k(x, y)ξ(y)dµ(y) ξ ∈ L2(X, µ) .

Then Tk is a Hilbert-Schmidt operator with the Hilbert-Schmidt norm ‖k‖.
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