Partial orders, Lattices, etc.

In our context…

- We aim at computing properties on programs
- How can we represent these properties? Which kind of algebraic features have to be satisfied on these representations?
- Which conditions guarantee that this computation terminates?

Motivating Example (1)

- Consider the renovation of the building of a firm. In this process several tasks are undertaken
	- Remove asbestos
	- Replace windows
	- Paint walls
	- Refinish floors
	- Assign offices
	- Move in office furniture

– …

Motivating Example (2)

- Clearly, some things had to be done before others could begin
	- Asbestos had to be removed before anything (except assigning offices)
	- Painting walls had to be done before refinishing floors to avoid ruining them, etc.
- On the other hand, several things could be done concurrently:
	- Painting could be done while replacing the windows
	- Assigning offices could be done at anytime before moving in office furniture
- This scenario can be nicely modeled using partial orderings

Partial Orderings: Definitions

- **Definitions**:
	- A relation *R* on a set *S* is called a partial order if it is
		- Reflexive
		- Antisymmetric
		- Transitive
	- A set S together with a partial ordering R is called a partially ordered set (poset, for short) and is denote (*S*,*R*)
- Partial orderings are used to give an order to sets that may not have a natural one
- In our renovation example, we could define an ordering such that $(a,b) \in R$ if 'a must be done before b can be done'

Partial Orderings: Notation

- We use the notation:
	- $-$ a \prec b, when (a,b) \in R
	- $-$ a $\not\prec$ b, when (a,b) \in R and a $\not\equiv$ b
- The notation \prec is not to be mistaken for "less than" (\prec versus \leq)
- The notation \prec is used to denote <u>any</u> partial ordering

Comparability: Definition

- **Definition**:
	- The elements a and b of a poset (S, \prec) are called comparable if either $a \prec b$ or $b \prec a$.
	- When for $a,b\in S$, we have neither $a\prec b$ nor $b\prec a$, we say that a,b are incomparable
- Consider again our renovation example
	- $-$ Remove Asbestos \prec $\mathsf{a_i}$ for all activities $\mathsf{a_i}$ except assign offices
	- $-$ Paint walls \prec Refinish floors
	- Some tasks are incomparable: Replacing windows can be done before, after, or during the assignment of offices

Total orders: Definition

- **Definition**:
	- If (S,\prec) is a poset and every two elements of S are comparable, S is called a totally ordered set.
	- The relation \prec is said to be a total order
- Example
	- The relation "less than or equal to" over the set of integers ($Z \leq$) since for every $a,b\in\mathbb{Z}$, it must be the case that $a\leq b$ or $b\leq a$
	- What happens if we replace \leq with $\lt?$

The relation \lt is not reflexive, and (Z,\lt) is not a poset

Hasse Diagrams

- Like relations and functions, partial orders have a convenient graphical representation: Hasse Diagrams
	- Consider the digraph representation of a partial order
	- Because we are dealing with a partial order, we know that the relation must be reflexive and transitive
	- Thus, we can simplify the graph as follows
		- Remove all self loops
		- Remove all transitive edges
		- Remove directions on edges assuming that they are oriented upwards
	- The resulting diagram is far simpler

Hasse Diagram: Example

Hasse Diagrams: Example (1)

- Of course, you need not always start with the complete relation in the partial order and then trim everything.
- Rather, you can build a Hasse Diagram directly from the partial order
- Example: Draw the Hasse Diagram
	- for the following partial ordering: $\{(a,b) | a|b\}$
	- on the set {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}
	- (these are the divisors of 60 which form the basis of the ancient Babylonian base-60 numeral system)

Hasse Diagram: Example (2)

$$
L = \{a,b,c,d,e,f,g\}
$$

$$
\prec = \{(a,c), (a,e), (b,d), (b,f), (c,g), (d,g), (e,g), (f,g)\}^{RT}
$$

 (L, \prec) is a partial order

 \circ

 $L = N$ (natural numbers) $p \prec = \{(n,m): \exists k \text{ such that } m=n*k\}$

 (L, \prec) is a partially ordered set (infinite)

• On the same set $E = \{1, 2, 3, 4, 6, 12\}$ we can define different partial orders:

• All possible partial orders on a set of three elements (modulo renaming)

Extremal Elements: Summary

We will define the following terms:

- A maximal/minimal element in a poset (S, \prec)
- The maximum (greatest)/minimum (least) element of a poset (S, \prec)
- An upper/lower bound element of a subset A of a poset (S, \prec)
- The greatest lower/least upper bound element of a subset A of a poset (S, \prec)

Extremal Elements: Maximal

- **Definition**: An element a in a poset (S, \prec) is called maximal if it is not less than any other element in S. That is: $\neg(\exists b \in S \ (a \prec b))$
- If there is one unique maximal element a, we call it the maximum element (or the greatest element)

Extremal Elements: Minimal

- **Definition**: An element a in a poset (S, \prec) is called minimal if it is not greater than any other element in S. That is: $\neg(\exists b \in S \ (b \prec a))$
- If there is one unique minimal element a, we call it the minimum element (or the least element)

Extremal Elements: Upper Bound

- **Definition**: Let (S, \prec) be a poset and let $A \subseteq S$. If u is an element of S such that $a \prec u$ for all $a \in A$ then u is an upper bound of A
- An element x that is an upper bound on a subset A and is less than all other upper bounds on A is called the <u>least upper bound on A</u>. We abbreviate it as lub.

Extremal Elements: Lower Bound

- **Definition**: Let (S, \prec) be a poset and let $A \subseteq S$. If I is an element of S such that $I \prec a$ for all $a \in A$ then I is an lower bound of A
- An element x that is a lower bound on a subset A and is greater than all other lower bounds on A is called the greatest lower bound on A. We abbreviate it glb.

 $(x_1, y_1) \leq N X \leq N (x_2, y_2) \Leftrightarrow x_1 \leq N X_2 \wedge y_1 \leq N y_2$

 $(x_1, y_1) \leq N X \leq N (x_2, y_2) \Leftrightarrow x_1 \leq N X_2 \wedge y_1 \leq N y_2$

Extremal Elements: Example 1

What are the minimal, maximal, minimum, maximum elements?

- Minimal: {a,b}
- Maximal: ${c,d}$
- There are no unique minimal or maximal elements, thus no minimum or maximum

Extremal Elements: Example 2

Give lower/upper bounds & glb/lub of the sets:

 ${d,e,f}, {a,c}$ and ${b,d}$

$\{d,e,f\}$

- Lower bounds: \varnothing , thus no glb
- Upper bounds: \emptyset , thus no lub

${a, c}$

- Lower bounds: \varnothing , thus no glb
- Upper bounds: {h}, lub: h

 $\{b,d\}$

- Lower bounds: {b}, glb: b
- Upper bounds: {d,g}, lub: d because $d \prec g$

Extremal Elements: Example 3

- Minimal/Maximal elements?
	- Minimal & Minimum element: a
	- Maximal elements: b,d,i,j
- Bounds, glb, lub of ${c,e}$?
	- Lower bounds: $\{a,c\}$, thus glb is c
	- Upper bounds: {e,f,g,h,i,j}, thus lub is e
- Bounds, glb, lub of $\{b,i\}$?
	- Lower bounds: $\{a\}$, thus glb is c
	- Upper bounds: \varnothing , thus lub DNE

Lattices

- A special structure arises when every pair of elements in a poset has an lub and a glb
- **Definition**: A lattice is a partially ordered set in which every pair of elements has both
	- a least upper bound and
	- a greatest lower bound

Lattices: Example 1

• Is the example from before a lattice?

• **No, because the pair {b,c} does not have a least upper bound**

Lattices: Example 2

• What if we modified it as shown here?

• **Yes, because for any pair, there is an lub & a glb**

A Lattice Or Not a Lattice?

- To show that a partial order is not a lattice, it suffices to find a pair that does not have an lub or a glb (i.e., a counter-example)
- For a pair not to have an lub/glb, the elements of the pair must first be incomparable (Why?)
- You can then view the upper/lower bounds on a pair as a sub-Hasse diagram: If there is no maximum/minimum element in this subdiagram, then it is not a lattice

Complete lattices

• Definition:

A lattice A is called a complete lattice if every subset S of A admits a glb and a lub in A.

• Exercise:

Show that for any (possibly infinite) set E, $(P(E), \subseteq)$ is a complete **lattice**

 $(P(E)$ denotes the powerset of E, i.e. the set of all subsets of E).

- $L = \{a,b,c,d,e,f,g\}$
- \leq \leq \leq $\{(a,c), (a,e), (b,d), (b,f), (c,g), (d,g), (e,g), (f,g)\}^T$
- (L,\le) is not a lattice: a and **b** are lower bounds of Y, but a and **b** are not comparable

• Prove that "Every finite lattice is a complete lattice".

 $L=Z_+$ $p \to$ total order on Z_+ \blacksquare lub = max \mathbf{g} glb = min It is a lattice, but not complete:

For instance, the set of even numbers has no lub

This is a complete lattice

- \blacktriangleright L=R (real numbers) with \prec = \le (total order)
- (R, \leq) is not a complete lattice: for instance $\{x \in R \mid x > 2\}$ has no lub

On the other hand, for each $x < y$ in R, ([x,y], \le) is a complete lattice

- \blacksquare L=Q (rational numbers) with \lt = \le (total order)
- \bigcirc (Q, \le) is not a complete lattice
- The set $\{x \in Q \mid x^2 < 2\}$ has upper bounds but there is no least upper bound in Q.

• Theorem:

Let (L, \prec) be a partial order. The following conditions are equivalent:

- 1. L is a complete lattice
- 2. Each subset of L has a least upper bound
- 3. Each subset of L has a greatest lower bound
- Proof:
	- $1 \Rightarrow 2$ e $1 \Rightarrow 3$ by definition
	- In order to prove that $2 \Rightarrow 1$, let us define for each Y \subseteq L $glb(Y) = lub({l \in L \mid \forall l' \in Y : l \leq l'})$

Functions on partial orders

- Let (P, \leq_P) and (Q, \leq_Q) two partial orders. A function ϕ from P to Q is said:
- monotone (order preserving) if $p_1 \leq_p p_2 \Rightarrow \varphi(p_1) \leq_q \varphi(p_2)$
- embedding if

 $p_1 \leq_p p_2 \Leftrightarrow \varphi(p_1) \leq_Q \varphi(p_2)$

• Isomorphism if it is a surjective embedding

 φ_1 (a) φ_1 (d) $\varphi_1(b)=\varphi_1(c)$

\Box φ_1 is not monotone

 $\varphi_2(d) = \varphi_2(e)$ $\varphi_2(b)=\varphi_2(c)$ φ_2 (a)

 \Box φ_2 is monotone, but it is not an embedding: $\varphi_2(b) \leq_{\mathbb{Q}} \varphi_2(c)$ but it is not true that $b \leq_{p} c$

 \Box φ_3 is monotone but it is not an embedding: $\varphi_3(b) \leq_Q \varphi_3(c)$ but it is not true that $b \leq_{p} c$

 \Box φ_4 is an embedding, but not an isomorphism.

Isomorphism

Monotone? Embedding? Isomorphism?

 \Box ϕ from (Z, \leq) to (Z, \leq) , defined by: $\phi(x)=x+1$

$$
\Box \quad \phi \text{ from } (\wp(S), \subseteq) \quad \text{to} \quad \begin{cases} 1 \\ 0 \end{cases}, \text{ defined by:}
$$
\n
$$
\phi(U)=1 \text{ if } U \text{ is nonempty, } \phi(\varnothing)=0.
$$

\n- □ φ from
$$
(\wp(\mathbb{Z}), \subseteq)
$$
 to $(\wp(\mathbb{Z}), \subseteq)$, defined by:
\n- ϕ(U)={1} if 1 ∈ U
\n- ϕ(U)={2} if 2 ∈ U and 1 does not belong to U
\n- ϕ(U)= \emptyset otherwise
\n

Ascending chains

• A sequence $(I_n)_{n \in \mathbb{N}}$ of elements in a partial order L is an ascending chain if

$$
n\leq m \Rightarrow \; I_n \leq I_m
$$

• A sequence $(I_n)_{n \in \mathbb{N}}$ converges if and only if

$$
\exists\ n_0{\in}\mathbb{N}:\forall\ n{\in}\mathbb{N}:n_0\leq n\Rightarrow\ I_{n_0}\!=I_n
$$

• A partial order (L,\le) satisfes the ascending chain condition (ACC) iff each ascending chain converges.

• The set of even natural numbers satisfies the descending chain condition, but not the ascending chain condition

- Infinite set
- Satisfies both ACC and **...** DCC

Lattices and ACC

- If P is a lattice, it has a bottom element and satisfies ACC, tyen it is a complete lattice
- If P is a lattice without infinite chains, then it is complete

Continuity

- In Calculus, a function is continuous if it preserves the limits.
- Given two partial orders (P, \leq_P) and (Q, \leq_Q), a functoin ϕ from P to Q is continuous id for every chain S in P

 $\varphi(lub(S)) = lub\{\varphi(x) | x \in S \}$

- Consider a monotone function f: $(P,\leq_P) \rightarrow (P,\leq_P)$ on a partial order P.
- An element x of P is a fixpoint of f if $f(x)=x$.
- The set of fixpoints of f is a subset of P called Fix(f):

 $Fix(f) = \{ l \in P \mid f(l)=l \}$

Fixpoint on Complete Lattices

- Consider a monotone function f: $L \rightarrow L$ on a complete lattice L.
- Fix(f) is also a complete lattice:

$$
Ifp(f) = glb(Fix(f)) \qquad \in Fix(f)
$$

gfp(f) = lub(Fix(f)) \qquad \in Fix(f)

• Tarski Theorem: Let L be a complete lattice. If f: $L \rightarrow L$ is monotone then $lfp(f) = glb\{ l \in L \mid f(l) \le l \}$ $gfp(f) = lub\{ l \in L \mid l \le f(l) \}$

Fixpoints on Complete Lattices

Kleene Theorem

- Let f be a monotone function: $(P,\leq_P) \to (P,\leq_P)$ on a complete lattice P. Let $\alpha = \bigsqcup_{n\geq 0} f^n(\bot)$
	- If $\alpha \in Fix(f)$ then $\alpha = Ifp(f)$
	- Kleene Theorem If f is continuous then the least fixpoint of f esists, and it is equal to α