P.B.SIDDHARTHA COLLEGE OF ARTS & SCIENCE DEPARTMENT OF CHEMISTRY M.Sc – CHEMISTRY (ORGANIC CHEMISTRY) I SEMESTER W.E.F 2022-23 (R22 Regulations)

Title of the Paper: GENERAL CHEMISTRY

Course Code	22CH1T1	Course Delivery Method	Class Room / Blended Mode - Both
Credits	4	CIA Marks	30
No. of Lecture Hours / Week	4	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction :2017-18	Year of Offering:	Year of Revision: 2022-23	Percentage of Revision: 40 %
	2022 - 23		

S.No	COURSE OUTCOMES	PO`S
	After completion of the course, the student will be able to :	
1	Recollect the concepts of titrimetric analysis, statistical rules, visible spectro photmetry and group theory in chemistry	2
2	Identify the role of titrimetric analysis, statistical rules, visible spectro photmetry and group theory in chemistry.	1,7
3	Demonstrate knowledge of titrimetric analysis, statistical data analysis, visible spectro photometry and group theory in chosen job role.	1,4
4	Test the conceptual knowledge gained in titrimetric analysis, statistical rules / principles,	1,6
	visible spectrosphotometry and group theory in chemistry.	

Syllabus

Course Details:-

Unit	Learning Units	Lecture Hours
Ι	Treatment of analytical data : Classification of errors – Determinate and indeterminate errors –Minimisation of errors – Accuracy and precision – Distribution of random errors – Gaussian	12
	distribution – Measures of central tendency – Measures of precision – Standard deviation – Standard error of mean – student's t test – Confidence interval of mean – Testing for significance – Comparison of two means – F – test – Criteria of rejection of an observation – propagation of errors – Significant figures and computation rules – Control charts – Regression analysis – Linear least squares analysis.	
II	Titrimetric Analysis: Classification of reactions in titrimetric analysis- Primary and secondary standards-Neutralisation titrations- Theory of Neutralization indicators-Mixed indicators- Neutralisation curves-Displacement titrations-Precipitation titrations-Indicators for precipitation titrations-Volhard method-Mohr method- Theory of adsorption indicators-Oxidation reduction titrations-Change of	12

	electrode potentials during titration of Fe(II) with Ce(IV)- Detection of end point in redox titrations-Complexometric titrations- Metal ion indicators-Applications of EDTA titrations-Titration of cyanide with silver ion.	
	Visible spectro photometry – Theory of spectrophotometry and colorimetry, Beer-Lambert's law - Deviations from Beers law. Classification of methods of colour measurement or comparison (standard series method, Duplication method, Dilution method, photoelectric-photometer method, spectrophotometer method)-Instrumentation – Applications-determination of phosphates, chlorides, Iron, Manganese, chromium - Photometric titrations-Spectrophotometric determination of pK value of an indicator.	12
IV	Symmetry and Group theory in Chemistry I Symmetry elements [Rotational axis of symmetry (C n), Plane of Symmetry(σ) and Classification of planes of symmetry i.e., Vertical plane(σ v) Dihedral Plane(σ d) and Horizontal Plane(σ h), Improper rotational axis of symmetry(S n), Inversion centre or Centre of symmetry(i) and Identity element(E)]. Identification of	12
	$[PtCl_4]^{-2}$, C_6H_6 , symmetry operation, Axioms of group theory- definition of group, sub group(Trivial and non-trivial sub groups), GMT tables- construction of GMT table Abelian (C_{2v}) and non	
	abelian groups(C_{3V}), relation between order of a finite group and its sub group. Point symmetry group. Schoenflies symbols, Group generating elements, Classification of molecules- MLS, MHS,& amp; MSS. Procedure to Find out Point group of a molecule (yes or no Method),	
V	Symmetry and Group theory in Chemistry II Representation of groups by Matrices (representation for the Cn, C_nv , C_nh , Dn etc. groups to be worked out explicitly). Definition of Class and importance of similarity transformation in identifying symmetry class with c_3v as example, Character of a representation. Reducible and Irreducible representations - Mulliken notations for Irreducible representations The great orthogonality theorem (without proof) and its importance. Character tables and their use. Construction of Character table (C_{2v} and C_{3v} only). Application of group theory in IR and Raman spectroscopy taking H ₂ O, NH ₃ , BF ₃	12
	examples. Mutual Exclusion principle with special reference to cis N_2F_2 and trans N_2F_2 .	

Reference Books:

1. Vogel's text book of quantitative analysis. (3rd edition)Addition Wesley Longmann Inc.

- 2. Quantitative analysis R.A Day and A.L.Underwood. Prentice Hall Pvt.Ltd.
- 3. Fundamentals of Analytical Chemistry Skoog and West
- 4. Instrumental Methods of analysis B K Sharma.

Course Focus: Employability.

M.Sc. DEGREE EXAMINATION

FIRST SEMESTER

Paper-I :: General Chemistry - I

Time: 3 hours 70

Maximum Marks:

SECTION – A

Answer all the questions.	Each question	carries 4 mark	s.
(5x4M=20M)			

1. (a) Discuss the role	of control charts in large scale production	. (CO-2, L
- 2)	- · · ·	· ·
	(Or)	
<u></u>		

(b)	Elaborate the measures of accuracy?	(CO-2, L
- 2)		

(a) Explain the terms primary & secondary standards in titrimetric analysis. (CO-2, L - 2)

(Or)

	(b) Enumerate the significance of mixed indicators.	(CO-2,
L- 2		

 (a) Give an account on classification of molecules in microwave spectroscopy. (CO-2, L - 2)

(Or)

(b) Write a short note on degrees of freedom.	(CO-2,
L - 2)	
4. (a) What are hot bands?- 2)	(CO-2, L

(Or)

(b) Construct the group multiplication of C_{2v} point group	(CO-2, L
- 2)	

5. (a) List out the possible symmetry elements and write the point group of the molecule HCHO. (CO-2, L –2)

(b) Define a class. Explain with an example. 2, L - 2)	(CO-
SECTION – B (10x5=50M)	
UNIT - I	
6. (a) Write notes on determinate errors.	(CO-2, L - 2)
(Or)	
(b)(i) What are the criteria for rejection of an observation?	(CO-2, L - 2)
(ii) Write notes on significant figures and computational rules.	(CO-2, L - 2)
UNIT – II	
7. (a) Explain the theory of neutralization indicators.	(CO-2, L - 2)
(Or)	
(b)Describe the Volhard & Mohr method in precipitation titrations.	(CO-2, L - 2)
UNIT – III	

(Or)

8. (a) Explain the spectrophotometric determination of Pk value of an indicator. (CO-2, L - 2)

(Or)

(b) Discuss the procedure involved in the determination of phosphate ion and manganese.

(CO-2, L - 2)

UNIT - IV

9. (a) Elaborate in detail the symmetry elements & symmetry operations with suitable examples.

(CO-3, L - 3)

(b) (i) Identify the possible symmetry elements in CH_4 & C_6H_6 molecules. (CO-2, L-2)

(ii) Discuss the classification of molecules basing on possible symmetry elements into MLS, MHS & MOS with examples.(CO-2,

L-2)

UNIT - V

10.a) Enumerate the role of group theory in IR & Raman spectroscopy. (CO-3, L-3)

(Or)

b) Explain the construction of C_{2V} character table. . (CO-3, L-