P.B.SIDDHARTHA COLLEGE OF ARTS & SCIENCE DEPARTMENT OF CHEMISTRY M.Sc – CHEMISTRY (ORGANIC CHEMISTRY) II SEMESTER W.E.F 2022-23 (R22 Regulations)

Title of the Paper: ADVANCED ORGANIC CHEMISTRY

Course Code	22CH2T2	Course Delivery Method	Class Room / Blended Mode - Both
Credits	4	CIA Marks	30
No. of Lecture Hours / Week	4	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction :2017-18	Year of Offering:	Year of Revision:	Percentage of Revision: 0%

S.No	COURSE OUTCOMES	PO`S
	After completion of the course, the student will be able to :	
1	Understand the basic and advanced concepts of stereochemistry, conformational analysis, green chemistry, nanochemistry and named reactions.	2,7
2	Apply the concepts related to stereochemistry, conformational analysis, green and nano chemistry in establishing the mechanism of the reaction.	1,2,3
3	Assess that how far the knowledge gained in stereochemistry, green chemistry and nanochemistry is useful in understanding the nature of product.	1,5,6
4	Evaluate the role of stereochemistry, green principles and nano chemistry in establishing the mechanism of a reaction as well as in other areas of chemistry.	1,4,7

Syllabus

C	Course Details				
Unit	Learning Units	Lecture Hours			
I	Named reactions: Aldol condensation, Benzoin condensation, Cannizzaro condensation, claisen condensation, Dieckmann condensation, Perkin condensation, Stobbe condensation, Reformatsky reaction, Mannich reaction, Reimer-Tiemann reaction, Vilsmeier-Haack reaction, Shapiro reaction, McMurray reaction, Michael addition reaction, Wittig reaction, Stork – Enamine reaction, Acyloin condensation, Robinson ring annulation and Simmon-Smith reaction.	12			
II	Stereo Chemistry-I: Concept of chirality, Recognition of Symmetry elements. Definition and classification of Stereoisomers, Enantiomer, Diastereomer, Homomer, Epimer, Anomer, Configuration and Conformation, Configurational nomenclature: D,L and R, S nomenclature. Molecular representation of organic molecules: Fischer, Newman and Sawhorse projections and their interconversions. Geometrical Isomerism. Cis-trans, E, Z- and Syn and anti nomenclature, Methods of determining configuration of Geometrical isomers using physical, spectral and chemical methods.	12			
	Stereo Chemistry-II: Definition of Conformation, Conformational analysis of acyclic molecules – alkanes and substituted alkanes. Conformational analysis of monocyclic molecules – cyclohexane –	12			

	chair, boat and twist boat - mono and disubstituted cyclohexanes and conformation around carbon hetero atom bonds having C–O & C–N. Confirmation and intramolecular hydrogen bonding.	
IV	Green chemistry & Phase transfer catalysis: Introduction to Green chemistry, Principles and concepts of Green chemistry, Green Catalysis, Biocatalysis, renewable resources, Green Reagents, examples of green reactions-synthesis of Ibuprofen, Clean Fischer-Indole synthesis comparison of the above with conventional methods. Introduction to Microwave organic synthesis: introduction, advantages and disadvantages. Applications: solvents (water and organic solvents), solvent free reactions (Solid state reactions).	12
V	Chemistry of Nanomaterials : Introduction, carbon nanotubes: structure of single and multi-walled carbon nanotubes, synthesis-solid and gaseous carbon source-based production techniques, synthesis with controlled orientation. Growth mechanism of carbon nano tubes-catalyst free growth, catalyst activated growth, general properties and applications.	12

Reference Text books:

- **1.** Advanced organic chemistry Reaction, mechanism and structure, Jerry March, John Wiley.
- 2. A guide book to Mechanism in organic chemistry, Peter Sykes, Longman.
- 3. Organic chemistry, I.L. Finar, Vol. I & II, Fifth ed. ELBS, 1975.
- 4. Stereo Chemistry of carbon compounds E.L. Eliel.
- 5. Nano, The Essentials: T. Pradeep, The Mc. Graw Hill & Co.
- **6.** Principles of organic synthesis, R.O.C. Norman and J.M. Coxon, Blakie Academic & Professional.
- 7. Reaction Mechanism in organic chemistry, S.M. Mukherji and S.P. Singh, Macmillan.
- **8.** Green chemistry Theory and Practice by Paul T. Anastas and John C. Warner, Oxford University press.
- **9.** Methods and reagents for Green chemistry, PietroTundo, Alvise Perosa, Fulvio Zecchini, John Willey& sons Inc.

Course Focus: Employability.

M.Sc. DEGREE EXAMINATION SECOND SEMESTER

Course Code : 22CH2T2

Paper-II :: Advanced Organic Chemistry	
	Ma

me: 3 hours	•	anced Organic Chemistry	Maximum Ma	irks: 70
	SE	CTION – A		(5x4M=20M)
1 (a). Explain Sh	apiro reaction.	(Or)		(CO-2, L-2)
(b). Explain Sto	bbe condensation.			(CO-2, L-2)
2 (a). Write notes	s on configuration and c	conformation. (Or)		(CO-1, L-1)
(b). Explain en	antiomers with suitable			(CO-1, L-1)
3(a). Draw the st	ructures of the cyclohe	xane boat and twist boat s (Or)	tructures.	(CO-1, L-1)
(b). Discuss cor	nformation and intramo	ecular hydrogen bonding.		(CO-2, L-2)
4(a). Discuss Cle	an Fischer Indole syntl	nesis. (Or)		(CO-3, L-3)
(b). Write notes	on Biocatalysis.			(CO-1, L-1)
5(a). Define nand	o explain.			(CO-1, L-1)
(b). Write gene	ral properties of carbor	SECTION – B		(CO-1, L-1) (5x10M=50M)
6.(a) Discuss the	e mechanism of the foll	UNIT - I owing (i) Benzoin condens	sation. (ii) Reforr	natsky reaction. (CO-2, L-2)
(b) Discuss the	e definition and mechar	(Or) nism of (i) Wittig reaction (i	ii) Acyloin conde	nsation. (CO-2, L-2)
7.(a) Explain the	e various elements of sy (Or)	UNIT – II /mmetry with suitable exai	mples.	(CO-1,L-1)
		letermination of configurat	tion of geometric	al isomers (CO-1,L-1)
8.(a) Discuss the	e conformational analys	UNIT – III sis of cyclohexane and exp (Or)	plain the stabilitie	es.(CO-1, L-1)
(b) Write an a	ccount of comformatior	(Or) around C – N and C – O	hetero atom bon	ds.(CO-1, L-1)
9.(a) Discuss the	e principles of green ch	UNIT - IV emistry.		(CO-2,L-2)
(b) Explain the	theory, principle and a	(Or) dvantages of MicroWave	(MW) organic sv	nthesis.
		UNIT - V	(, 3 ,	(CO-2,L-2)
10.(a) Explain gro	wth mechanism of cart	oon nanotubes.		(CO-2, L-2)
(b) Give an ap	plications of carbon nar	(Or) notubes.		(CO-2,L-2)