P.B.SIDDHARTHA COLLEGE OF ARTS & SCIENCE DEPARTMENT OF CHEMISTRY M.Sc – CHEMISTRY (ORGANIC CHEMISTRY) II SEMESTER W.E.F 2022-23 (R22 Regulations)

Title of the Paper: ADVANCED PHYSICAL CHEMISTRY

Course Code	22CH2T3	Course Delivery Method	Class Room / Blended Mode - Both
Credits	4	CIA Marks	30
No. of Lecture Hours / Week	4	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction :2017-18	Year of Offering:	Year of Revision:	Percentage of Revision: 0%

S.No	COURSE OUTCOMES	PO`S
	After completion of the course, the student will be able to :	
1	Remember the concepts of thermodynamics, polymer chemistry, electro chemistry, chemical kinetics, photo chemistry and Radio chemistry.	1,2,7
2	Understand the concepts of thermodynamics, polymer chemistry, electro chemistry, chemical kinetics, photo chemistry and Radio chemistry.	1,2,7
3	Apply the concepts of thermodynamics, polymer chemistry, electro chemistry, chemical kinetics, photo chemistry and Radio chemistry in research and other allied fields.	1,2,4
4	Analyze the role and significance of concepts of thermodynamics, polymer chemistry, electro chemistry, chemical kinetics, photo chemistry and Radio chemistry.	1,2,7
5	Evaluate the role of concepts of thermodynamics, polymer chemistry, electro chemistry, chemical kinetics, photo chemistry and Radio chemistry in understanding the named concepts in chemistry.	1,2,7

Syllabus

C	ourse Details	
Unit	Learning Units	Lecture
		Hours
I	Third law of Thermodynamics and Statistical thermodynamics: Nernst Heat theorem - Third law of thermodynamics - Its limitations - Determination of absolute entropy -Thermodynamic probability and most probable distribution, Entropy and probability - Boltzmann- Plank equation. Ensembles, Maxwell-Boltzmann distribution, Fermi- Dirac statistics, Bose Einstein statistics. Partition function - calculation of thermodynamic properties in terms of partition function - Chemical equilibrium and partition function - Translational, rotational and electronic partition function - Entropy of Monoatomic gases (Sackur-Tetrode equation).	12

II	Polymer chemistry and Raman Spectroscopy: Classification of polymers - Free radical, ionic and Zeigler -Natta Polymerization - kinetics of free radical polymerization - Techniques of polymerization - Glass transition temperature - Factors influencing the glass transition temperature. Number average and Weight average, Molecular weights –molecular weights determinations – Membrane Osmometry, Light scattering phenomenon. Classical and quantum theories of Raman effects, pure rotational, vibrational and Vibrational- rotational Raman spectra, selection rules, mutual exclusion principle.	12
III	Electro Chemistry-II: Reference electrode - Standard hydrogen electrode. Calomel electrode -Indicator electrodes: Metal-metal ion electrodes - Inert electrodes -Membrane electrodes - theory of glass membrane potential, potentiometric titrations, advantages of potentiometric titrations, Conductometric titrations. Electrode potentials - Double layer at the interface - rate of charge transfer - Decomposition potential - Over potential - Tafel plots - Derivation of Butler- Volmer equation for one electron transfer - electro chemical potential.	12
IV	 Chemical kinetics and Photo chemistry: Branching Chain Reactions – Hydrogenoxygen reaction - lower and upper explosion limits - Fast reactions - Study of kinetics by flow methods - Relaxation methods - Flash photolysis. Acid base catalysis – protolytic and prototropic mechanism. Enzyme catalysis - Michelis- Menten kinetics. Photochemistry: Quantum yield and its determination, Actinometry, Reactions with low and high quantum yields, Photo sensitization, Exciplexes and Excimers, Photochemical equilibrium, Kinetics of collisional quenching - Stern- Volmer equation. 	12
V	Radioactivity and Isotopes: Introduction to radioactivity, properties of alpha rays, beta rays and gamma rays, theory of radioactive disintegration, rate of disintegration, Geiger – Nuttal rule, radioactive equilibrium. Isotopes - radioactive and non-radioactive isotopes, group displacement law. Analysis of isotopes – Aston's mass spectrograph, Dempster's method, Bainbridge's method. Separation methods of isotopes. Applications of Radio isotopes in Industry and medicine.	12

Text books/ Reference books:

- 1. Physical chemistry, G.K. Vemulapalli (Prentice Hall of India).
- 2. Physical chemistry, P.W. Atkins. ELBS.
- 3. Chemical kinetics K.J. Laidler, McGraw Hill Pub.
- 4. Text book of Physical Chemistry, Samuel Glasstone, Macmillan pub.
- 5. Statistical Thermodynamics M.C.Gupta.
- 6. Polymer Sceince, Gowriker, Viswanadham, Sreedhar.
- 7. Quantitative Analysis, A.I. Vogel, Addison Wesley Longmann Inc.
- 8. Physical Chemistry by G.W.Castellan, Narosa Publishing House, Prentice Hall.
- 9. Physical Chemistry by W.J. Moore, Prentice Hall.
- **10.** Polymer Chemistry by Billmayer.
- **11.** Fundamentals of Physical Chemistry by K K. Rohatgi-Mukherjee. Wiley Eastern Ltd publications.
- **12.** Statistical Thermodynamics by M.Dole.
- 13. Fundamentals of photochemistry by Rohatgimukherjee, New Age international Publications.
- 14. Essentials of Nuclear chemistry by H.J.Armikar, New Age international Publications

Course Focus: Employability & Entrepreneurship

M.Sc. DEGREE EXAMINATION SECOND SEMESTER Course Code : 22CH2T3 Paper-IV :: Advanced Physical Chemistry

Time: 3 hours	Maximum Marks: 70
SECTION – A	(5x4M=20M)
1 (a). Explain briefly Nernst Heat theorem.	(CO-2, L-2)
(b). Discuss Third law of thermodynamics in short.	(CO-2, L-2)
2 (a). Demonstrate Classification of polymers.	(CO-3, L-3)
(b). Describe the Free radical polymerization with appropriate mechanisr	m. (CO-2, L-2)
3(a). Explain Branching Chain Reactions in short.	(CO-2, L-2)
(b). Discuss briefly Hydrogen oxygen reaction with appropriate mechan	ism. (CO-2, L-2)
4(a). Discuss briefly Double layer at the interface.	(CO-2, L-2)
(b). Expalin over potential in short.	(CO-2, L-2)
5(a). What is radioactivity? Describe the properties of alpha rays. (Or)	(CO-2, L-2)
(b). Discuss briefly the theory of radioactive disintegration. SECTION – B	(CO-2, L-2) (5x10M=50M)
6.(a) Derive Fermi-Dirac statistics. (b) Derive Bose Einstein statistics.	(CO-3, L-3) (CO-3, L-3)
(Cr) (c) Derive Chemical equilibrium interms of partition function. (d) Derive Entropy of Monoatomic gases (Sackur-Tetrode equation).	(CO-3, L-3) (CO-3, L-3)
7.(a) Illustrate Zeigler -Natta Polymerization with suitable example.	(CO-3, L-3)
(b) Differentiate between Number average and Weight average weight o detail. UNIT – III	of a polymer in (CO-3, L-3)
8.(a) Discuss with a neat labelled diagram Standard hydrogen electrode ar electrode in detail.	nd Calomel (CO-2, L-2)
(b) Demonstrate the conductometric titrations in detail with a neat labelle	ed graphs.(CO-3, L-3)
9.(a) What are Fast reactions ? Discuss the Study of kinetics by flow methods with a neat labeled diagram.	ods and Relaxation (CO-3, L-3)
(Dr) (b) Differentiate between protolytic and prototropic mechanisms of Aci	id Base catalysis. (CO-3, L-3)
UNIT - V 10.(a) Explain the rate of disintegration in detail. (b) Discuss the Geiger – Nuttal rule. (Or)	(CO-2, L -2) (CO-2, L -2)
(c) Discuss the radioactive equilibrium.(d) What are isotopes? Illustrate radioactive and non-radioactive isotop	(CO-2, L -2) pes in detail. (CO-3, L-3)