P.B.SIDDHARTHA COLLEGE OF ARTS & SCIENCE DEPARTMENT OF CHEMISTRY M.Sc – CHEMISTRY (ORGANIC CHEMISTRY) III SEMESTER

Paper Code & Title: 22CH3E1: ORGANIC REACTION MECHANISM

No. of hours per week: 04 Total credits: 04
Total marks: 100 (Internal: 30 M & External: 70M)

Course: Organic ReactionMechanism (code 22CH3E1)		
S.No	COURSE OUTCOMES	PO'S
	The student will be able to	
1	Acquire sound knowledge of oxidations, reductions, molecular rearrangements, pericyclic reactions and photo chemistry.	2
2	Understand the concepts involved in oxidations, reductions, molecular rearrangements, pericyclic reactions and photo chemistry.	1,7
3	Apply the conceptual knowledge gained in oxidations, reductions, molecular rearrangements, pericyclic reactions and photo chemistry in chosen fields.	1,5,6
4	Analyse and categorise the various types oxidations, reductions, molecular rearrangements, pericyclic reactions and photo chemistry in a given reactions.	1,7,4

UNIT-I

Oxidations

Definition and types of Oxidations,oxidations with ruthenium tetroxide,NBS,iodobenzenediacetate,TI(III) nitrate, Chromium (VI) oxidants, Lead tetra acetate, SeO_2 , MnO_2 , Ag_2CO_3 , Oppenauer oxidation, perhydroxylation using $KMnO_4$, OsO_4 , HIO_4 ,oxidation withiodine silver carboxylate (Woodward and Prevost conditions), Definition & mechanism of epoxidation by peracids.

UNIT-II

Reductions

Definition and types of reductions, reduction by dissolving metals - Reduction with metal and liquid ammonia (Birch Reduction of aromatic compounds), Reduction with metal acid -Clemensons reduction, Reduction by hydride transfer reagents, Aluminiumalkoxide - MeerweinPondorfVerley Reduction, LiAlH₄, NaBH₄, Diisobutylaluminium hydride(DIBAL), Sodium cyanoborohydride,trialkylborohydrides, Reduction with diimide,. Wolff-Kishnerreduction.

UNIT-III

Molecular Rearrangements

Migration toelectron deficient carbon atom. Pinacole-Pinacolone rearrangement, Wagner-Meerwein rearrangement, Dienone-Phenolrearrangement, Benzil-Benzilic acid rearrangement, Favorski rearrangementArndt Eistert rearrangement, Sommelet – Hauser rearrangement.

Migration to electron deficient hetero atom:.Wolf, Hofmann, Curtius,Lossen, Schmidt, Beckmann rearrangement, Baeyer-Villiger rearrangement,Stevens, Neber rearrangements.Fries, Fischer-Hepp, Orton,Bamberger, Dakin, CumeneHydroperoxide rearrangement.

UNIT-IV

Pericyclic Reactions – I:

Definition, classification of pericyclic reactions, Molecular Orbital energy level diagrams, electronic configuration in ground and first excited states of Ethylene, 1,3-Butadiene, 1,3,5 – Hexatriene, allyl system, stereo chemical notations – suprafacial, antarafacial, conrotatory and disrotatory modes, Woodward and Hoffmann selection rules.

Electrocyclic reactions: Mechanism, Stereochemistry of (4n) and (4n+2) π systems. PMO, FMO and correlation methods.

Cyclo additions:Mechanism, stereochemistry of (2+2) and $(4+2)\pi$ systems, PMO, FMO and correlation methods.

Sigmatropic rearrangements: Classification, mechanism for FMO and PMO approach under thermal and photo chemical conditions. (Detailedtreatment of Claisen, Cope rearrangements fluxional molecules, aza-cope rearrangements).

UNIT-V

Photochemistry:

Photochemical processes: Energy transfer, sensitization and quenching. Singlet and triplet states and their reactivity. Photochemistry of olefins – conjugated olefins, Aromatic compounds—isomerisation—additions. Photochemistry of carbonyl compounds – Norrish type I and II reactions – Paterno – Buchi Reaction.

Photoreduction, Photochemical rearrangements—PhotoFries rearrangement, Di- π -methane rearrangement.

Reactions of unactivated C – H bonds: The Hoffmann Loffler freytag reaction, Barton reaction, photolysis of organic nitrites, photolysis of N – nitrosoamides.

References:

- 1. Molecular reactions and Photochemistry by Charles Dupey and O. Chapman, Prentice Hall.
- 2. Reaction mechanism in organic chemistry. 3rd edition, S.M.Mukherji&singh.
- 3. Advanced Organic Chemistry-Reactions, Mechanisms and Structure, Jerry March, John Wiley and sons, 6th edition.
- 4..Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
 - 5. Modern methods of organic synthesis, Cambridge University press, 3rd edition, W.Carruthers.
 - 6. Organic Reaction Mechanisms, V.K.Ahluwalia, 4th edition, Narosa.
 - 7. Reactions, rearrangements and reagents.S.N.Sanyal,4th edition.
 - 8. Organic Photo chemistry and Pericyclic reactions' M.G.AroraAnmol Publications Pvt. Ltd.
 - 9. Fundamentals of Photochemistry by K.K.Rohatgi–Mukherjee New Age international publishers.