

# PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE

## Autonomous

Siddhartha Nagar, Vijayawada-520010

Re-accredited at 'A+' by the NAAC

## 22CH4D1: GREEN CHEMISTRY

| Course Code                   | 22CH4D1 | I A Marks      | 30  |
|-------------------------------|---------|----------------|-----|
| No. of Lecture Hours / Week   | 4       | End Exam Marks | 70  |
| Total Number of Lecture Hours | 60      | Total Marks    | 100 |
| Seminar                       | -       | Exam Hours     | 03  |

|      | Course:GREEN CHEMISTRY                                                                           |       |  |  |
|------|--------------------------------------------------------------------------------------------------|-------|--|--|
| S.No | COURSE OUTCOMES                                                                                  | PO'S  |  |  |
|      | The student will be able to                                                                      |       |  |  |
|      | Memorize the principles of green chemistry and concepts related to green organic synthesis.      | 2,7   |  |  |
| 2    | Understand the role and significance of green organic synthesis.                                 | 1,2,7 |  |  |
| 3    | Exercise the basic and advanced knowledge gained in green organic synthesis in chosen job role.  | 1, 6  |  |  |
| 4    | Analyse how far green methods are environmentally benign over conventional methods of synthesis. | 1, 7  |  |  |
| 5    | Evaluate the principles of green chemistry in organic synthesis.                                 | 1, 7  |  |  |

| CO-PO MATRIX              |       |     |     |     |     |     |     |     |
|---------------------------|-------|-----|-----|-----|-----|-----|-----|-----|
|                           | СО-РО | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
| COURSE<br>CODE<br>22CH4D1 | CO1   |     | Н   |     |     |     |     | M   |
|                           | CO2   | M   | M   |     |     |     |     | L   |
|                           | CO3   | Н   |     |     |     |     | Н   |     |
|                           | CO4   | Н   |     |     |     |     |     | M   |
|                           | CO5   | Н   |     |     |     |     |     | M   |

#### Unit-I

**Principles of Green Chemistry:** Prevention of waste / by-products, atom economy, Hazardous products-Designing of safer chemicals-energy requirements Selection of appropriate solvents and starting materials-Use of protecting groups and catalysis-Designing of biodegradable products. green organic synthesis of paracetamol, catechol, adipic acid, urethane and ibuprofen.

#### **Unit-II**

**Microwave assisted reactions:** Theory of Microwave, advantages, disadvantages, applications-water as solvent: Hoffmann elimination, hydrolysis, oxidation of Toluene, oxidation of alcohols, hydrolysis of methyl benzoate to benzoic acid.

Organic solvents: Esterification reactions, Fries rearrangement, Ortho ester Claisen rearrangement, DielsAlder reactions, synthesis of chalcones, decarboxylation.

Solid state reactions (solvent free): De acetylation, deprotection, saponification of esters, synthesis of anhydrides from dicarboxylic acid, synthesis of nitriles from aldehydes.

#### **Unit-III**

**Phase Transfer Catalysis**: Definition, Mechanism, Types, advantages and applications of PTC – Calkylation, N-alkylation, Darzen's reaction, Wittig reaction, Benzoyl cyanides from benzoyl chloride, alcohols from alkyl halides, Crown ethers – Introduction, synthetic applications: esterfication, saponification, Anhydride formation, KMnO<sub>4</sub> oxidation, aromatic substitution, elimination.

## **Unit-IV**

**Ultrasound assisted green synthesis:** Introduction, instrumentation, types of sono chemical reactions – Homogeneous reactions – Curtius rearrangement of Benzoyl azide to phenyl isocyanate. Heterogeneous Liquid-Liquid reactions - Esterification, saponification, Hydrolysis, substitutions, additions. Heterogeneous Solid – Liquid Reactions–oxidation, reduction, hydroboration, coupling, Bouveault reaction, Strecker reaction.

#### **Unit-V**

**Ionic liquids:** Definition-Types of Ionic Liquids- properties- Application in organic synthesis-alkylation, allylation, oxidation, hydrogenation, hydroformylation, alkoxycarbonylation, carbon-carbon bond forming reactions-suzuki coupling, Heck reaction, stille coupling.

## **Textbooks/Referencebooks:**

- 1. New Trends in Green Chemistry by V.K.Ahluwalia, M.Kidwai.
- 2. Green Chemistry: Environment Friendly Alternatives by Rashmi Sanghi, M.M.Srivastava
- 3. Green Solvents for Organic Synthesis by V.K.Ahluwalia, RajenderS.Varma.
- 4. Organic synthesis special Techniques, V.K.Ahluwalia, Renu Aggarwal.
- 5. Green Chemistry V.K. Ahluwalia, Ane Books Pvt. Ltd.,

9) (a) 2D INADEQUATE technique is useful to establish C-C mapping. Justify.

(CO-2,L2)

(b) NOESY technique is useful to establish spatial interaction. Justify. (CO-4,L-4)

## UNIT - V

10) (a) Deduce the structure of the compound consistent with the following data elemental analysis: C=32.14%H 5.35% and Cl 62.5% UV: No absorption above 210 nm, IR (CCl<sub>4</sub>), 2941,2265 and 1460cm-1PMR  $\delta$  2.72(septet,J=6.7,1H),1.33 (doublet J=6.7,6H). State whether data is consistent to deduce the structure.

(CO-5,L-5)

(OR)

(b) Deduce the structure of the compound consistent with the following data elemental analysis: C=32.14%H 5.35% and Cl 62.5% UV: No absorption above 210 nm IR (CCl<sub>4</sub>)940,1265 and 690cm-1 and PMR δ3.5(2H,D),3.3(1H,m) and 1.25(3H,d). State whether data is consistent to deduce the structure. (CO-5,L-5)

\*\*\*

## FOURTH SEMESTER

## 22CH4D1 :: GREEN CHEMISTRY

|         | 22CH4D1 :: GREEN CHEMISTRY                                                                                  |                                |
|---------|-------------------------------------------------------------------------------------------------------------|--------------------------------|
| Time    | e: 3 hours Maximum Marks: 7                                                                                 | <u>'0</u>                      |
|         | SECTION – A                                                                                                 | 2014                           |
|         | Answer all the questions 5X4                                                                                | =20M                           |
| 1.      | (a). Write the green synthesis of urethane. (OR)                                                            | (CO-2,L-2)                     |
|         | (b). Define atom economy. Explain atom economy in rearrangeme suitable example.                             | ent reaction with a (CO-2,L-2) |
| 2)      | (a). Discuss esterification reactions in organic solvents. (OR)                                             | (CO-2,L-2)                     |
|         | (b). Explain the synthesis of nitriles from aldehydes.                                                      | (CO-2,L-2)                     |
| 3)      | (a). Give the disadvantages of microwave assisted organic synthes (OR)                                      | is. (CO-2,L-2)                 |
|         | (b). Discuss the various types of phase transfer catalysts.                                                 | (CO-2,L-2)                     |
| 4)      | (a) Write the mechanism of phase transfer catalysis. (OR)                                                   | (CO-2,L-2)                     |
|         | (b) Write notes on ultrasound assisted homogeneous reactions.                                               | (CO-2,L-2)                     |
| 5)      | (a) Write notes on ultrasound assisted strecker reaction. (OR)                                              | (CO-3,L-3)                     |
|         | (b) Write notes on hydroformylation.                                                                        | (CO-3,L-3)                     |
|         | SECTION – B                                                                                                 | (5x10=50M)                     |
|         | UNIT – I                                                                                                    |                                |
| 6)      | (a) Write a brief account of twelve principles of green chemistry.  (OR)                                    | (CO-2,L-2)                     |
|         | (b) Out line the green synthesis of the following compounds: (i) Ibuprofen (ii) paracetamol (iii) catechol. | (CO-3,L-3)                     |
| 7)      | UNIT – II  (a) Discuss microwave assisted reactions in organic solvents.  (OR)                              | (CO-3,L-3)                     |
| (b) Dis | scuss the theory, advantages and disadvantages of microwave.                                                | (CO-2,L-2)                     |
|         | UNIT – III  (a) Define phase transfer catalyst. Write notes on C – alkylation an ng PTC.  (OR)              | d N – alkylation<br>(CO-3,L-3) |
|         | (b) Discuss the synthetic applications of crown ethers.                                                     | (CO-3,L-3)                     |