22CS2L1: DATA STRUCTURES LAB

Course Name	Data Structures Lab			L	Т	Р	С	CIA	SEE	ТМ
Course Code	22CS2L1			0	0	6	3	30	70	100
Year of Introduction:		Year of Offering:	Year of Revision:			Percentage of Revision:				
2020		2022	No Revision			Nil				
L-Lecture, T-Tutorial, P-Practical, C-Credits, CIA-Internal Marks, SEE-External Marks, TM-Total										
Marks										

Course Description and Purpose:

Data Structures Lab (22CS2L1) is a course that illustrates concepts of *Stacks*, *Queues*, and *Tree Traversals*, *Singly Linked Lists*, *Doubly Linked Lists*, *Circular Linked Lists*, *Binary Search Tree*, *Binary Search Tree Traversals*, *Sparse Matrix and DFS & BFS Algorithm*, *Searching & Sorting Algorithms*, *AVL-Trees and B-Trees* and its operations and implementations.

Course Objectives:

This course will help enable the students to understand learn, apply/ implement the concepts of *Stacks*, *Queues*, and *Tree Traversals*, *Singly Linked Lists*, *Doubly Linked Lists*, *Circular Linked Lists*, *Binary Search Tree*, *Binary Search Tree Traversals*, *Sparse Matrix* and *DFS & BFS Algorithm*, *Searching & Sorting Algorithms*, *AVL-Trees* and *B-Trees*.

Specific Objectives include:

- To understand the concepts of Stacks, Queues, and Tree Traversals.
- To apply the operations of Singly Linked Lists, Doubly Linked Lists, Circular Linked Lists and Operations on Stacks and Queues.
- To apply operations on Binary Search Tree, Binary Search Tree Traversals, Sparse Matrix and DFS & BFS Algorithm.
- To implement Searching & Sorting Algorithms.
- To implement AVL-Trees and B-Trees.

Course Learning Outcomes:

Upon successful completion of the course, the student will be able to:

CO1:Understand the concepts of *Stacks*, *Queues*, and *Tree Traversals*.

CO2: Apply the operations of *Singly Linked Lists*, *Doubly Linked Lists*, *Circular Linked Lists* and *Operations on Stacks and Queues*.

CO3:Apply operations on *Binary Search Tree*, *Binary Search Tree Traversals*, *Sparse Matrix and DFS & BFS Algorithm*.

CO4:Implement *Searching & Sorting Algorithms*.

CO5:Implement *AVL-Trees* and *B-Trees*.

CYCLE 1

1. Write a Java Program to create a class called Stack and implement Stack Operations. (CO1,L1)

2. Write a Java Program to create a class called Queue and implement Stack Operations. (CO1,L1)

- 3. Write a Java Program to convert the Infix to Postfix Expression. (CO1,L1)
- 4. Write a Java Program to evaluate Postfix Expression. (CO1,L1)
- 5. Write a Java Program to obtain the Binary Number for a given Decimal Number. (CO1,L1)

CYCLE 2

- 1. Write a Java Class to implement the operations of a Singly Linked List. (CO2,L1)
- 2. Write a Java Class to implement the operations of a Doubly Linked List. (CO2,L1)
- 3. Write a Java Class to implement the operations of a Circular Linked List. (CO2,L1)

- 4. Write a java program for the following a) Reverse a Linked List b) Sort the data in a Linked List c) Remove Duplicates d) Merge Two Linked Lists (CO2,L1)
- 5. Write a java program for performing various operations on Stack using Linked List. (CO2,L1)
- 6. Write a java program for performing various operations on Queue using Linked List. (CO2,L1)

CYCLE 3

1. Write a Java Program to implement operations on Binary Trees Using Recursive and Non-Recursive Methods. (CO3,L1)

2. Write a Java Program to perform Binary Search Tree Traversal. (CO3,L1)

- 3. Write a Java Program to implement Sparse Matrix. (CO3,L1)
- 4. Write a Java Program to implement DFS Algorithm. (CO3,L1)
- 5. Write a Java Program to implement BFS Algorithm. (CO3,L1)

CYCLE 4

- Write a Java Program to implement the following sorting techniques:

 a. Bubble Sort
 b. Merge Sort.
 c. Quick Sort.
 d. Heap Sort. (CO4,L1)
- 2. Write a Java Program to implement Quick Sort of given elements. (CO4,L1)
- 3. Write a Java Program to implement the Following search techniques:a. Linear Searchb. Binary Search(CO4,L1)

CYCLE 5

- 1. Write a Java Program to implement various operations on AVL Trees. (CO5,L1)
- 2. Write a Java Program to perform the following operations: a) Insertion into a B-Tree b) Searching in a B-Tree (CO5,L1)
- 3. Write a Java Program to implementation of recursive and non-recursive functions to Binary Tree Traversals (CO5,L1)
- 4. Write a Java Program to implement all the functions of Dictionary (ADT) using Hashing. (CO5,L1)

Note: The list of experiments is not limited to the above list. If the existing laboratory experiments completed in advance, the additional laboratory programs can added , and to be executed in the laboratory.