

P.B. SIDDHARTHA COLLEGE OF ARTS & SCIENCE

Siddhartha Nagar, Vijayawada – 520 010 Reaccredited at 'A+' level by NAAC Autonomous & ISO 9001:2015 Certified

Title of the Course: REAL ANALYSIS - I Semester : I

Course Code	22MA1T1	Course Delivery Method	Blended Mode
Credits	4	CIA Marks	30
No. of Lecture Hours / Week	4	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction : 2020-2021	Year of offering : 2022-23	Year of Revision:	Percentage of Revision :

Course Objective: The main objective of this course is to develop problem solving skills and knowledge on the basic concepts of continuity, differentiation, Riemann-Stieltjes integrals, Improper integrals.

Course Outcomes: After successful completion of this course, students will be able to

CO-NO	COURSE OUTCOME	BTL	РО	PSO
CO1	understand the properties of continuous functions.	K3	7	1
CO2	understand the properties of differentiable functions.	K3	7	1
CO3	test the Riemann- Stieltjes integrability of bounded functions and their properties.	K3	5	2
CO4	understand the effect of uniform convergence on the limit function with respect to continuity, differentiability and integrability.	K3	4	1
CO5	test the convergence of improper integrals.	K3	1	2

Mapping of Course Outcomes:

CO-PO-PS	SO MAT	RIX								
	CO- PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
	CO1							2	2	
22MA1T1	CO2							2	2	
	CO3					3				3
	CO4				2				2	
	CO5	3								3

UNIT-I

Continuity: Limits of functions- continuous functions- Continuity and Compactness-Continuity and Connectedness- Discontinuities. [4.1 to 4.27 of chapter 4 of Text Book1]

UNIT-II

Differentiation:

Derivative of a Real Function- Mean value theorems- The Continuity of Derivatives-L'Hospital's rule- Derivatives of higher order- Taylor's theorem. [5.1 to 5.15 of chapter 5 of Text Book1]

UNIT-III

The Riemann - Stieltjes Integral: Definition and Existence of Integral-Properties of the integral -Integration and Differentiation –Integration of vector-valued functions - Rectifiable Curves. [Chapter-6 of Text Book-1]

UNIT-IV

Sequences and Series of functions: Discussion of main problem - Uniform convergence – Uniform convergence and continuity – Uniform Convergence and Integration – Uniform Convergence and Differentiation – Equicontinuous families of functions – The Stone - Weierstrass Theorem.[7.1 to 7.26 of Text Book 1]

UNIT-V

Improper Integrals: Introduction - Integration of unbounded Functions with Finite limits of

Integration – Comparison Tests for Convergence at a of $\int f dx$ - Infinite range of Integration

– Integrand as a Product of Functions. [Chapter-11 of Text Book-2]

PRESCRIBED BOOKS:

1. Walter Rudin, "Principles of Mathematical Analysis", Student Edition 1976,

McGraw-Hill International Publishers.

2. S.C. Malik and Savita Aurora, "**Mathematical Analysis**", Fourth edition, New Age International Publishers.

REFERENCE BOOK:

1.Tom. M. Apostol, "**Mathematical Analysis**" second Edition, Addison Wesley Publishing Company.

Course has Focus on : Foundation

Websites of Interest: 1. www. nptel.ac.in

- 2. <u>www.epgp.inflibnet.ac.in</u>
- 3. www.ocw.mit.edu

P B SIDDHARTHA COLLEGE OF ARTS AND SCIENCE::VIJAYAWADA (An Autonomous college in the jurisdiction of Krishna University) M. Sc. Mathematics First Semester REAL ANALYSIS – I -22MA1T1

Time: 3 Hours

Max. Marks: 70

SECTION-A

Answer all questions.	(5 X 4=20)
1 (a) Let $f(x) = (1/x), x \neq 0$	
=0, x = 0.	
Examine the continuity of the function $f(x)$ on R.	(CO1, K2)
(OR)	
(b) If f is a continuous mapping of a compact metric space X into a metric s	space Y, then
prove that $f(X)$ is closed and bounded.	(CO1, K2)

- 2 (a) Prove that every differentiable function on (a, b) is continuous on (a, b). (CO2, K2) (OR)
- (b) State and prove mean value theorem. (CO2, K2)

3 (a) Show that
$$\int_{a}^{b} f d\alpha \leq \int_{a}^{b} f d\alpha$$
. (CO3, K2)

(OR)

- (b) State and prove fundamental theorem of calculus. (CO3, K2)
- 4 (a) Differentiate Pointwise convergence and Uniform convergence of sequence of functions. (CO4, K3)

(OR)

(b) For every interval [a, -a], prove that there is a sequence of real polynomials P_n such that $P_n(0) = 0$ and $\lim_{n \to \infty} P_n(x) = |x|$ uniformly on [a, -a] (CO4, K3)

5 (a) Examine the convergence of
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x}}$$
 (CO5, K4)

(OR)

(b) Examine the convergence of
$$\int_{0}^{\infty} \sin x dx$$
 (CO5, K4)

SECTION-B

Answer all questions. All questions carry equal marks.	(5X10=50)
6 (a) Show that a mapping f of a metric space X into a metric space Y is contin	uous
if and only if $f^{-1}(V)$ is open in X, for every open set V in Y.	(CO1, K3)
(OR)	
(b) If f is a continuous mapping of a compact metric space X into a metric sp	ace Y, and E
is a connected subset of X, then prove that $f(E)$ is connected.	(CO1, K3)
7 (a) Suppose f is continuous on [a, b], $f^{l}(x)$ exists at $x \in [a, b]$, g is defined on	an interval I
which contains the range of f, and g is continuous at $f(x)$. If $h(t) = g(f(t))$,	then prove that
h is differentiable at x and $h^{1}(t) = f^{1}(g(x))g^{1}(x)$.	(CO2, K2)
(OR)	

- (b) State and Prove Taylor's theorem. (CO2, K2)
- 8 (a) If f is monotonic on [a, b] and if α is continuous on [a, b] then show that $f \in R(\alpha)$.

(CO3, K3)

(OR)

(b) If
$$\gamma^{-1}$$
 is continuous on [a, b] then show that γ is rectifiable and $\wedge(\gamma) = \int_{a}^{b} |\gamma^{1}(t)| dt$.
(CO3, K3)

9 (a) If $\{f_n\}$ is sequence of continuous functions on E and if $f_n \rightarrow f$ uniformly on E, then show that f is continuous on E. (CO4, K4)

(OR) (b) State and prove Stone – Weierstrass theorem. (CO4, K4)

- 10 (a) Test the convergence of the integral $\int_{0}^{1} \frac{dx}{(x-a)^{n}}$ for n<1. (CO5, K4) (OR)
 - (b) Show that if f and g are positive and $f(x) \le g(x)$, for all x in [a, X] and $\int_{a}^{\infty} g(x)dx$ converges, then $\int_{a}^{\infty} f(x)dx$ converges. (CO5, K4)