

P.B. SIDDHARTHA COLLEGE OF ARTS & SCIENCE

Siddhartha Nagar, Vijayawada – 520 010 Reaccredited at 'A+' level by NAAC Autonomous & ISO 9001:2015 Certified

Title of the Course: ALGEBRA

: I

Semester

Course Code	22MA1T3	Course Delivery Method	Blended Mode
Credits	4	CIA Marks	30
No. of Lecture Hours/ Week	4	Semester End Exam Marks	70
Total Number of Lecture Hours	60	Total Marks	100
Year of Introduction : 2020-2021	Year of offering : 2022-2023	Year of Revision: 	Percentage of Revision :

Course Objectives: The main objective of this course is to acquire knowledge on the basic concepts of Group theory and Ring theory.

Course Outcomes: After successful completion of this course, students will be able to

CO-NO	COURSE OUTCOME	BTL	РО	PSO
CO1	understand the properties of Groups and homomorphisms.	K3	7	1
CO2	understand permutation groups and Cayley's theorem.	K3	1	1
CO3	apply Sylow's theorems.	K3	1	2
CO4	understand the properties of Rings and fields.	K3	1	1
CO5	understand the properties of Euclidean rings and polynomial rings.	K3	7	1

Mapping of Course Outcomes:

CO-PO-PSO MATRIX										
	CO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
22MA1T3	PO									
	CO1							2	2	
	CO2	2							2	
	CO3	3								3
	CO4	2							2	
	CO5							2	2	

UNIT-I

Group Theory: Definition of a Group, Some Examples of Groups, Some Preliminary Lemmas, Subgroups, A Counting Principle, Normal Subgroups and Quotient Groups, Homomorphisms, Automorphisms. [Sections 2.1 to 2.8 of the prescribed book]

UNIT-II

Group Theory Continued: Cayley's theorem, Permutation groups, Another counting principle. [Sections 2.9 to 2.11 of the prescribed book]

UNIT-III

Group Theory Continued: Sylow's theorem, direct products, finite abelian groups.

[Sections 2.12 to 2.14 of the prescribed book]

UNIT-IV

Ring Theory: Definition and Examples of Rings, Some special classes of Rings, Homomorphisms, Ideals and quotient Rings, More Ideals and quotient Rings, The field of quotients of an Integral domain. [Sections 3.1 to 3.6 of the prescribed book]

UNIT-V

Ring Theory Continued: Euclidean rings, A particular Euclidean ring, Polynomial Rings, Polynomials over the rational field, Polynomial Rings over Commutative Rings. [Sections 3.7 to 3.11 of the Prescribed book].

[Sections 5.7 to 5.11 of the Prescribed book

PRESCRIBED BOOK:

1. I.N. Herstein, **Topics in Algebra**, Second Edition, Wiley Eastern Limited, New Delhi, 1988.

REFERENCE BOOKS:

- 1. Bhattacharya P.B., Jain S.K., Nagpaul S.R., **"Basic Abstract Algebra"**, Second Edition, Cambridge Press.
- 2. David S Dummit and Richard M Foote, "Abstract Algebra", Wiley Publications, Third Edition.
- 3. C. Musili, "Introduction to Rings and Modules", Narosa Publications.

Course has Focus on : Foundation

Websites of Interest: 1. www. nptel.ac.in

- 2. www.epgp.inflibnet.ac.in
- 3. www.ocw.mit.edu

P B SIDDHARTHA COLLEGE OF ARTS AND SCIENCE::VIJAYAWADA (An Autonomous college in the jurisdiction of Krishna University) M. Sc. Mathematics First Semester ALGEBRA-22MA1T3 Time: 3 Hours Max Marks: 70

SECTION - A	
Answer all questions	(5X4 = 20)
1 (a) If G is a finite group and $a \in G$ then prove that $a^{o(G)} = e$. (OR)	(CO1, K2)
(b) Define a subgroup and a normal subgroup.	(CO1, K2)
2 (a) If G is a group of order 36 and H is a subgroup of order 9, prove that G can	not be simple.
	(CO2, K3)
(OR)	
(b) Find the product of the permutations $\Phi = (1 \ 2 \ 3 \ 4)$ and $\psi = (3 \ 4 \ 5 \ 1)$	(CO2, K3)
3 (a) Define a p-sylow subgroup and give an example. (OR)	(CO3, K2)
(b) Define external direct product and internal direct product of groups.	(CO3, K2)
4 (a) Prove that a finite integral domain is a field. (OR)	(CO4, K2)
(b) Define a homomorphism of rings and give an example.	(CO4, K2)
5 (a) Define Euclidean Ring and give an example. (OR)	(CO5, K2)
(b) Define an irreducible polynomial and a primitive polynomial over a field F.	(CO5, K2)
SECTION - B	
Answer all questions. All questions carry equal marks.	(5X10 = 50)
6 (a) If H and K are finite subgroups of G of orders o(H) and o(K) respectively	Ι,
then show that $o(HK) = o(H)o(K) / o(H \cap K)$.	(CO1, K2)
(OR)	
(b) State and prove the fundamental theorem of homomorphism in groups.	(CO1, K2)
7 (a) Show that every group is isomorphic to a subgroup of A(S), for some ap	propriate S.
	(CO2, K2)
(OR)	
(b) State and prove Cauchy's theorem.	(CO2, K2)

8 (a) Show that any two Sylow subgroups of a group G are conjugate.	(CO3, K2)			
(OR)				
(b) Show that If G and G^1 are isomorphic abelian groups, then show that $G(s)$ and $G^1(s)$				
are isomorphic, for every integer s.	(CO3, K2)			
9 (a) If U is an ideal of a ring R, then show that R/U is a ring and is a homomorphic				
image of R.	(CO4, K3)			
(OR)				
(b) If R is a commutative ring with unity and M is an ideal of R, then prove that M is				
maximal if and only if R/M is a field.	(CO4, K3)			
10(a) Prove that J[i], the ring of Gaussian integers is a Euclidean ring.	(CO5, K3)			
(OR)				
(b) State and prove Gauss Lemma.	(CO5, K3)			
