

P.B. SIDDHARTHA COLLEGE OF ARTS & SCIENCE

Siddhartha Nagar, Vijayawada – 520 010 Reaccredited at 'A+' level by NAAC Autonomous&ISO 9001:2015 Certified

Title of the Course: DISCRETE MATHEMATICAL STRUCTURESSemester: II

Course Code	22MA2D3	Course Delivery Method	Blended Mode	
Credits	4	CIA Marks	30	
No. of Lecture Hours / Week	4	Semester End Exam Marks	70	
Total Number of Lecture Hours	60	Total Marks	100	
Year of Introduction : 2020-21	Year of offering : 2022-23	Year of Revision:	Percentage of Revision:	

Course Objective : The main objective of the course to acquire knowledge on the basic concepts in Logic, Finite Machines, Lattices and their Applications.

CO-NO	COURSE OUTCOME	BTL	РО	PSO
CO1	Construct truth tables of statements and apply rules of inference for conclusions.	К3	1	2
CO2	Construct state diagrams of finite machines	K3	3	2
CO3	understand the concepts of lattices and Boolean algebras.	K3	1	1
CO4	Compute minimal forms of Boolean polynomials.	K3	3	2
CO5	Construct switching circuits and understand Boolean algebras.	K3	7	2

Mapping of Course Outcomes:

CO-PO-PSO MATRIX										
22MA2D3	CO- PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
	CO1	3								3
	CO2			2						3
	CO3	2							2	
	CO4			2						3
	CO5							3		3

UNIT –I

Logic :Logic, Tautology, Normal Forms, Logical Inferences, Predicate Logic, Universal Quantifiers, Rules of Inference, Recurrence Relations, Solution using generating functions (1.6 to 1.10 of Chapter 1 & 3.7,3.8 of chapter 3 of [3])

UNIT –II

Finite Machines : state machine, input-output machines, Introduction, state tables and state diagrams, simple properties, Dynamics, Behavior and Minimization. (Sections 5.1 to 5.5 of Chapter 5 of [1])

UNIT – III

Lattices: Properties and Examples of Lattices, Distributive Lattices, Boolean Algebras. (Sections 1 to 3 of Chapter 1 of [2]).

UNIT –IV

Lattices continued: Boolean polynomials, Ideals, filters and equations, Minimal forms of Boolean polynomials, (Sections 4,5,6 of Chapter -1 of [2])

UNIT –V

Application of Lattices: Switching circuits, Applications of switching circuits, More Applications of Boolean Algebras (Sections 7, 8 and 9 of Chapter -2 of [2]).

PRESCRIBED BOOKS

[1] "Application oriented Algebra" JAMES L FISHER, IEP, Dun- Downplay pub.1977.

- [2] "Applied abstract algebra", Second Edition, R.LIDL AND G. PILZ, Springer, 1998.
- [3] "Discrete Mathematical Structures", RM. SOMASUNDARAM, Prentice Hall of India,2003

REFERENCE BOOK: "Discrete Mathematical Structures with Applications to Computer Science", J.P.TREMBLAY AND R.MANOHAR, Tata Mc. Graw Hill, 2002.

Course has Focus on :Foundation (Elective Paper)

Websites of Interest :1. www. nptel.ac.in

- 2. www.epgp.inflibnet.ac.in
- 3. www.ocw.mit.edu

P B SIDDHARTHA COLLEGE OF ARTS AND SCIENCE::VIJAYAWADA (An autonomous college in the jurisdiction of Krishna University) M. Sc. Mathematics Second Semester DISCRETE MATHEMATICAL STRUCTURES – 22MA2D3

Time: 3 hours

SECTION-A

Answer all questions. (5x4=20)1 a) Prove that $P \lor (Q \land R)$ and $(P \lor Q) \land (P \lor R)$ are logically equivalent. (CO1, L1) (OR) b) Solve the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$, with $a_0 = 1$ and $a_1 = 6$ (CO1, L1)2 a) Prove that state machine congruence is an equivalence relation. (CO2, L2) (OR)b) Let M=(S, I, O, δ , θ) be an i/o machine ,then show that there exists an out put machine M_1 and a one to one function $f: S \rightarrow S_1$ such that $\beta_s = \beta_{f(s)}$. (CO2, L2) 3 a) Define (i) distributive lattice (ii) Boolean algebra and give an example. (CO3, L1) (OR)

b) State and prove De Morgan laws in a Boolean algebra. (CO3, L1)
4 a) Prove that an ideal M in a Boolean algebra B is maximal if and only if for any b € B either b € M or b['] € M but not both. (CO4, L2)

(OR)

- b) Define a principle ideal. Show that a principle ideal (b) = $\{a \in B | a \le b\}$. (CO4, L2)
- 5 a) Show that the identity x(y+z)=xy+xz is valid. (CO5, L3)

(OR)

b) Construct circuits for (i) (x+y) \overline{x} and (ii) $\overline{x}(\overline{(y+\overline{z})})$ (CO5, L3)

Max. Marks: 70

SECTION – B

Answer all questions. All questions carry equal marks. 6 a) Define a tautology. Show that the expression $((P^{\rightarrow}Q) \rightarrow R) \rightarrow (P \rightarrow (Q \lor R))$ is a tautology. b) Obtain DNF and CNF of the following formula (~P v ~Q) \rightarrow (P \leftrightarrow ~Q). (CO1, L2) (OR) c) Solve $a_r - 2a_{r-1} = (r+1)2^r$. (CO1, L2)

7 a) Let f be a state homomorphism from the state machine $M=(S,I, \delta)$ onto the state machine $M_1 = (S_1, I, \delta_1)$. Then show that there exists a state machine congruence on M

such that M is isomorphic to $M_{1.}$

(CO2, L3)

(OR)

b) Minimize the states of the following machine and write reduced machine. (CO2, L3)

states	δ		θ		
	0		1	0	1
1	2		5	1	0
2	5		5	1	1
3	1		8	1	1
4	8		2	1	0
5	6		5	1	1
6	1		5	1	1
7	2		3	1	0
8	3		5	1	1

(5X10=50)

- 8 a) Define atom and join-irreducible element in a Lattice. Show that every atom is join-irreducible.
 - b) State and prove the distributive inequalities in Lattices. (CO3, L3)

(OR)

9 a) Find CNF and DNF of the polynomial x(y+z)' + (xy+z)'. (CO4, L3)

(OR)

b) Minimize the following Boolean polynomial using Quiene- Mc Clusky method wx y z + w xy z + w x y z + w x y z + w x y z + w x yz + w x yz + w x yz . (CO4, L3)

10 a) Draw the diagram for the following switching circuit

 $P = x_1(x_2(x_3+x_4)+x_3(x_5+x_6)) .$

b) Determine the symbolic representation of the circuit given by

 $P = (x_1 + x_2 + x_3)(x_1 + x_2)(x_1 + x_2 + x_1 + x_2)(x_2 + x_3).$ (CO5, L3)

(OR)

c) Explain the central lighting system in a room and draw its switching circuit. (CO5, L3)
