

P.B. SIDDHARTHA COLLEGE OF ARTS & SCIENCE

Siddhartha Nagar, Vijayawada – 520 010 Reaccredited at 'A+' level by NAAC Autonomous & ISO 9001:2015 Certified

22MADSL202 : GALOIS THEORY Semester : III

Course Code	22MA3D1	Course Delivery Method	Blended Mode		
Credits	4	CIA Marks	30		
No. of Lecture Hours / Week	4	Semester End Exam Marks	70		
Total Number of Lecture Hours	60	Total Marks	100		
Year of Introduction : 2020-21	Year of offering : 2022-23	Year of Revision: 2022-23	Percentage of Revision : 5%		

Course Objectives : To develop skills and knowledge on some of the basic concepts in Modules, Algebraic Extensions, Splitting fields, Polynomials solvable by radicals.

Course Outcomes: After successful completion of this course, students will be able to

CO-NO	COURSE OUTCOME	BTL	РО	PSO
C01	Understand the concepts of modules, submodules, quotient modules, homomorphisms and characterize completely reducible modules.	K3	1	1
CO2	Derive and apply Gauss Lemma, Eisenstein criterion for irreducibility of Polynomials.	K3	7	2
CO3	understand the concept of normal and separable extensions.	K3	1	1
CO4	derive Fundamental theorem of Galois theory and related results.	K3	1	2
CO5	apply Galois theory to classical problems.	K3	7	2

Mapping of Course Outcomes:

CO-PO-PSO MATRIX										
	СО-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
22MA3D2	PO									
	CO1	3							2	
	CO2							3		3
	CO3	2							2	
	CO4	2								3
	CO5							3		3

UNIT I

Modules: Definition and examples, sub modules and direct sums, R-homomorphisms and quotient modules, Completely reducible modules. (Sections 1 to 4 of chapter 14 of [1])

UNIT II

Algebraic Extensions of fields: Irreducible polynomials and Eisenstein's criterion, Adjunction of roots, Algebraic extensions, Algebraically closed fields. (Sections 1 to 4 of chapter 15 of [1])

UNIT III

Normal and Separable extensions: Splitting fields, Normal extensions, Multiple roots, Finite fields, Separable extensions. (Sections 1 to 5 of chapter 16 of [1])

UNIT IV

Galois Theory: Automorphism groups and fixed fields, Fundamental theorem of Galois theory, Fundamental theorem of algebra. (Sections 1 to 3 of chapter 17 of [1])

UNIT V

Applications of Galois Theory to Classical Problems: Roots of unity and cyclotomic polynomials-Cyclic extensions- Ruler and compass constructions. (Sections 1, 2, 5 of chapter 18 of [1])

PRESCRIBED TEXT BOOK:

1. Bhattacharya, P. B. Jain S. K and Nagpaul S. R, **Basic abstract algebra**, Second edition, Cambridge Press.

REFERENCE BOOKS:

1. Joseph Rotman, Galois theory, Second edition, Springer, 1998.

2. Artin M, Algebra, PHI, 1991.

3. David S Dummit and Richard M Foote, **Abstract Algebra**, Third Edition, Wiley Publications.

Course has Focus on : Foundation

Websites of Interest: 1. www. nptel.ac.in

- 2. www.epgp.inflibnet.ac.in
- 3. www.ocw.mit.edu

P.B. SIDDHARTHA COLLEGE OF ARTS & SCIENCE Siddhartha Nagar, Vijayawada – 520 010 **M. Sc. Mathematics** Third Semester 22MA3D1 - GALOIS THEORY

Time: 3 hours

SECTION A

Answer all questions.

(5x4=20M)1 a) Define an R-module, R-sub-module and give an example to each. (CO1, K2) (or)

- b) Let M be an R-module and RM= $\{\sum r_i m_i / r_i \in R, m_i \in M\}$ then show that RM is a sub module of M. (CO1, K2)
- 2. a) show that x^2 -2 is a irreducible over Q.

(or)

b) Define irreducible polynomial and show that $x^3-x-1 \in Q[x]$ is irreducible over Q.

(CO2, K3)

(CO2, K3)

- 3. a) Define splitting field of a polynomial f(x) over the field F and show that the degree of the extension of the splitting field of $x^3 - 2 \in Q[x]$ is 6. (CO3, K2) (or)
 - b) Let f(x) be an irreducible polynomial over F then prove that f(x) has a multiple root

$$f^{l}(x) = 0.$$
 (CO3, K2)

4. a) If E is a finite extension of a field F, then prove that $|G(E \setminus F)| \leq |E:F|$. (CO4, K2)

(or)

- b) The group G(Q(α)/Q) where $\alpha^5 = 1$ and $\alpha \neq 1$ is isomorphic to the cyclic group of order 4. (CO4, K2)
- 5. a) Define primitive nth root of unity and nth cyclotomic polynomial and given an example To each. (CO5, K2)

(or) b) Show that the galois group of x^4+x^2+1 is the same as that of x^6-1 and is of order 2. (CO5, K2) (P.T.O.)

SECTION B

Answer all questions. All questions carry equal marks. (5X10=50M)

Max. Marks: 70

- 6 a) Let f be an R-homomorphism of an R-module M into an R-module N. Then prove that M / kerf ≅ f(M)
 (OR)
 - b) Let R be a ring with unity. Then prove that an R-module M is cyclic iff $M \cong R/I$, for some left ideal I or R. (CO1,K2)
- 7 a) State and prove Gauss lemma.

(OR)

(CO2,K3)

- b) Define algebraic element and algebraic extension of a field. If E is a finite extension of a field F, then prove that E is an algebraic extension of F. (CO2,K3)
- 8 a) Let E be a finite extension of a field F. Then prove that the following conditions are equivalent.
 - (i) $E=F(\alpha)$ for some $\alpha \in E$.
 - (ii) There are only a finite number of intermediate fields between F and E. (CO3, K2)

(OR)

- b) Let $f(x) \in F[x]$ be a polynomial of degree ≥ 1 with α as a root. Then prove that α is a multiple root if and only if $f'(\alpha) = 0$. (CO3,K3)
- 9 a) State and prove Dedikind lemma. (CO4,K4)
 - b) State and prove the fundamental theorem of Galois theory. (CO4,K4)
- 10 a) Let F be a field contains a primitive nth root ω of unity, then prove the following are equivalent.
 i) E is a finite cyclic extension of degree n over F.
 ii) E is the splitting field of an irreducible polynomial xⁿ b ∈ F[x]. (CO5,K4)

b) If a and b are constructible numbers, then prove that

i) ab is constructible.
ii) a / b, b ≠0 is constructible.

(CO5,K4)
