

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE Autonomous Siddhartha Nagar, Vijayawada–520010 Re-accredited at 'A+' by the NAAC

22MA4D4 : SEMIGROUPS

Semester : IV

Course Code	22MA4D4	Course Delivery Method	Blended Mode	
Credits	4	CIA Marks	30	
No. of Lecture Hours / Week	4	Semester End Exam Marks	70	
Total Number of Lecture Hours	60	Total Marks	100	
Year of Introduction : 2021-22	Year of offering : 2023-24	Year of Revision: 2023-24	Percentage of Revision :5%	

Course Objective : The objective of the course is to acquire knowledge on basic concepts of Semigroups, Semilattices, congruences, Regular Semigroups, Simple Semigroups and Completely 0-Semisimple groups.

COURSE OUTCOME	Upon successful completion of this course, students will be able to:
CO1	know the basic definitions in semigroup theory
CO2	construct new semigroups using congruences
CO3	understand the basic properties of Green's relations, regular semigroups
CO4	understand the definitions of 0-simple semigroups and the proofs of some of the main theorems in this section
CO5	understand the concepts of congruences on completely 0-simple semigroups, free semi groups

Mapping of Course Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	0	0	0	0	0	0
CO2	0	0	0	0	0	0	3
CO3	2	0	0	0	0	0	0
CO4	0	0	0	0	0	0	3
CO5	3	0	0	0	0	0	0

UNIT – I

Basic Definitions, Monogenic Semigroups, Ordered Sets, Semilattices and Lattices, Binary Relations, Equivalences. (Sections 1 to 4 of Ch. I of prescribed book [1])

UNIT –II

Congruences, Free Semigroups, Ideals and Rees Congruences, Lattices of Equivalences and Congruences. (Sections 5 to 8 of Ch. I of prescribed book [1])

UNIT – III

Introduction, The equvivalences L, R, H, J and D, The structure of D-Classes, Regular Semigroups. (Chapter II of prescribed book [1])

UNIT – IV

Introduction, Simple and 0 – Simple Semigroups, Principle Factors, Rees's Theorem, Primitive Idempotents. (Sections 1 to 3 of Chapter III of prescribed book [1])

UNIT – V

Congruences on Completely 0 – Simple semigroups, The Lattice of Congruences on a Completely 0 – Simple Semigroup, Finite Congruence- Free Semigroups. (Sections 4 to 6 of Chapter III of prescribed book [1])

PRESCRIBED BOOK:

1. Howie, J.M, An Introduction to Semigroup Theory, Academic Press(1976).

REFERENCE BOOKS:

1. Clifford A.H, Preston G.B, The Algebraic Theory of Semigroups, American Mathematical Society(1961).

Course has Focus on : Foundation (Elective Paper)

Websites of Interest: 1. www. nptel.ac.in

- 2. <u>www.epgp.inflibnet.ac.in</u>
- 3. <u>www.ocw.mit.edu</u>

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE Autonomous

Siddhartha Nagar, Vijayawada–520010 *Re-accredited at 'A+' by the NAAC*

> M.Sc. Mathematics Fourth Semester 22MA4D4 - SEMIGROUPS

Time:3 hours

Max. Marks: 70

SECTION - A

Ansv	(5x4=20)	
1		(CO1, L1)
		(CO1 I 1)
	b) Define an equivalence relation and give an example.	(CO1, L1)
2	a) Define a congruence relation and give an example.	(CO2, L2)
	(OR)	
	b) Define a Free semigroup and give an example.	(CO2, L2)
3	a) Explain briefly about D-Classes.	(CO3, L1)
	(OR)	
	b) Define Regular semigroup and give an example.	(CO3, L1)
4	a)(Define 0- simple semi group and give an example.	(CO4, L1)
	(OR)	
	b) Define a congruence Free semigroup and give an example.	(CO4, L1)
5	a) Define completely 0-simple semigroup and give an example.	(CO5, L2)
	(Or)	
	b) Define Lattice of congruences and give an example.	(CO5, L2)

SECTION-- B

Answer the following questions. All questions carry equal marks. (5X10=50)

6 (a) Show that a semi group S with zero is a o- group if and only if $(\forall a \in S / \{0\})$

aS = Sa = S.(CO1, L2)

(OR)

(b) If R is any binary relation on a set X, then prove that $R^e = [R \cup R^{-1} \cup 1_x]^{\infty}$.

(CO1, L2)

7 (a) If R is a relation on a semi group S, then show that $R^{\#} = (R^{c})^{e}$. (CO2, L3)

(OR)

(b)Show that a modular lattice is semi modular. (CO2, L3)

(Turn Over)

8 (a) If H is an H- class in a Semi group S then show that either $H^2 \cap H = \phi$ or $H^2 = H$ and H is a subgroup of S. (CO3, L3)

(OR)

- (b) If H and K are two group H classes in the same D class then show that H and K are isomorphic. (CO3, L3)
- 9 (a) If M is a 0- minimal ideal of S then show that either M² = 0 or M is a 0- simple semi group. (CO4, L4)

(OR)

- (b) Show that a 0-Simple semi group is completely 0- Simple if and only if it contains a primitive idempotent. (CO4, L4)
- 10 (a) If S is a finite congruence free semi group with out zero and if |S| > 2 then prove that S is a simple group. (CO5, L3)

(OR)

(b) If ρ and σ are proper congruences on S = μ^0 [G: I, $\wedge: \rho$] then show that

$$\rho \cap \sigma = [N_{\rho} \cap N_{\sigma}, \rho_{1} \cap \sigma_{1}, \rho_{\wedge} \cap \sigma_{\wedge}]$$

$$\rho \vee \sigma = [N_{\rho}.N_{\sigma}, \rho_{1} \vee \sigma_{1}, \rho_{\wedge} \vee \sigma_{\wedge}]$$
(CO5, L3)
