

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE Autonomous

Siddhartha Nagar, Vijayawada-520010 Re-accredited at 'A+' by the NAAC

Offered to : M.Sc.(PHYSICS)	Course Code : 22PH2T1
Course Type : Core	Course : STATISTICAL MECHANICS
Year of Introduction : 2004	Year of offering : 2022
Year of Revision : 2022	Percentage of Revision : Nil
Semester : II	Credits : 4
Hours Taught : 60 hrs. per Semester	Max.Time : 3 Hours

Paper -1: STATISTICAL MECHANICS

Course Description:

Statistical Mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of the nature from the behavior of such ensembles

Course Objectives:

1. Understand the basic concepts of statistical mechanic, phase space and ensembles

2. Understand theorems and applying conclusions to specific problems related to large group of particles

3. Understand the ensembles and partition function

4. Understand the particle distributions and applications.

5. Apply statistical laws to the stellar object and particles to understand the evolution of universe and to study the properties of matter

Course Outcomes: At the end of this course, students should be able to:

CO1: Understand the basic concepts of statistical mechanics.

CO2: Understand theorems of statistical mechanics.

CO3: Understand the ensembles and partition function.

CO4: Understand the particle distributions and applications.

CO5: Apply statistical laws to the stellar object and particles.

CO - PO MATRIX								
22PH2T1	CO-PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	CO1	Н					L	М
	CO2	Н					L	М
	CO3	Н					L	М
	CO4	Н	М				L	М
	CO5		Н	М			L	М

Syllabus

Unit	Learning Units	Lecture Hours
	Unit-I: Basics of Classical Statistical Mechanics	
T	Introduction, Microstates and Macro states, Phase space, Volume in	12
1	Liouvilles theorem Conservation of extension in phase Equation of	12
	motion and Liouville theorem Equal a prior probability statistical	
	equilibrium. (CO1)	
	Unit-II: Canonical and Grand Canonical Ensembles	
TT	Micro canonical ensemble – Ideal gas in micro canonical ensemble,	12
11	Gibbs paradox, Canonical ensemble - Ideal gas in canonical ensemble,	12
	Grand canonical ensemble - Ideal gas in grand canonical ensemble,	
	Comparison of various ensembles. Equipartition theorem. (CO2)	
	Unit-III: Partition functions	
	Canonical partition function, Molecular partition function, Translational	
III	partition function, Rotational partition function, Vibrational partition	12
	function, Electronic and Nuclear partition function, Application of	
	rotational partition function, Application of vibrational partition function	
	to solids. (CO3)	
	UNIT IV: Ideal Bose -Einstein Gas	
IV	Bose-Einstein distribution, Bose-Einstein condensation, thermodynamic	12
	of liquid Holium II. Super fluid phases of 3Ho. (COA)	
	UNIT -V. Ideal Fermi-Dirac Gas	
V	Fermi-Dirac distribution. Degeneracy. electrons in metals. Thermionic	12
v	emission, Magnetic susceptibility of free electrons, White Dwarfs,	
	Nuclear Matter.	

Reference Books:

- 1. Statistical and Thermal Physics, S. LOKANADHAN and R.S. GAMBHIR(PHI).
- 2. Statistical Mechanics: Theory and Applications, S.K. SINHA (Tata Mc Graw-Hill).
- 3. Statistical Mechanics, GUPTA AND KUMAR (PragatiPrakashan, Meerut).
- 4. Statistical Mechanics, by SATYAPRAKASH.
- 5. Statistical Mechanics, K. HUANG (John Wiley & Sons).