

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE Autonomous Siddhartha Nagar, Vijayawada–520010 Re-accredited at 'A+' by the NAAC

Paper – 3: SOLID STATE PHYSICS

Offered to : M.Sc.(PHYSICS)	Course Code : 22PH2T3
Course Type : Core	Course : Solid State Physics
Year of Introduction : 2004	Year of offering : 2022
Year of Revision : 2022	Percentage of Revision : Nil
Semester : II	Credits : 4
Hours Taught: 60 hrs. per Semester	Max.Time: 3 Hours

Course Description:

In solid state physics the student studies how the large-scale properties of solid materials result from their atomic-scale properties and forms a theoretical basis of materials science.

Course Objectives:

- 1.To understand the basic theory of structure and composition of the solid.
- 2. To understand the properties of the crystalline materials.
- 3. To learn the concepts of reciprocal lattice and Brillouin zone schemes.
- 4. To understand the effect of magnetic and electric field on the crystalline materials.
- 5. To enhance the ability of students to understand electron and band theories.

CourseOutcomes: Attheendof thiscoursethestudentsshouldbeableto:

CO1: Understand the basic concepts of translation vectors, lattices, symmetry operations, lattice types and simple crystal structures.

- CO2: Understand the experimental diffraction methods, reciprocal lattice and Brillouin zones
- CO3: Understand the properties of the free electron gas.
- CO4: Understand the concepts of Fermi levels and quantization of orbits in magnetic fields.

CO5: Understand the concepts of band gap and various electronics models in solids.

CO - PO MATRIX								
22PH2T3	CO-PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	CO1	Н					L	М
	CO2	Н					L	М
	CO3	Н			М		L	М
	CO4	Н			М		L	М
	CO5	Н			М		L	М

Syllabus				
Unit	Learning Units	Lecture Hours		
Ι	Introduction to crystallography Periodic array of atoms- Lattice translation vectors, Basis and the Crystal Structure, Primitive Lattice cell, Fundamental types of lattices-Two Dimensional lattice types, three Dimensional lattice types- Index system for crystal planes- simple crystal structures; sodium chloride- cesium chloride – Hexagonal Close Packed Structure -Diamond Structure- Zinc Sulfide structure	12		
II	Crystal Diffraction and Reciprocal Lattice Bragg's law, scattered wave amplitude-Reciprocal Lattice vectors-Diffraction conditions-Laue Equations, Brillouin Zones - Reciprocal lattice to SC lattice, BCC lattice and FCC lattices, properties of reciprocal lattice, geometrical structure factor- BCC lattice and FCC lattices, atomic form factor.	12		
Ш	Free Electron Fermi Gas Energy levels in one-dimension, Free electron gas in 3 dimensions, Heat capacity of the electron gas- Experimental heat capacity of metals, electrical conductivity and Ohms law – experimental electrical resistivity of metals, Motion in Magnetic Fields, Hall effect, thermal conductivity of metals - Ratio of thermal to electrical conductivity- Widemann Franz ratio.	12		
IV	Fermi Surfaces of Metals Reduced zone scheme - periodic Zone schemes- Construction of Fermi surfaces- Electron orbits, hole orbits and open orbits, Experimental methods in	12		

	Fermi surface studies – Quantization of orbits in a magnetic field, De-Hass- van Alphen Effect, extremal orbits, Fermi surface of Copper. Fermi surface of gold, Magnetic breakdown.	
V	Band Theory of Solids Failure of free electron theory of metals, Nearly free electron model-Origin of the energy gap- The Bloch theorem- Kronig-Penney Model, wave equation of electron in a periodic potential distinction between metals, insulators and intrinsic semiconductors, Effective mass of electron-Crystal momentum of an electron-Approximate solution near a zone boundary.	12

Text and Reference Books:

- 1.Solid State Physics, A.J. DEKKER (Macmillan).
- 2. Introduction to Solid State Physics, CHARLES KITTEL (John Wiley & Sons).
- 3. Introduction to Solid State Physics, ARUN KUMAR (PHI).
- 4. Elements of Solid State Physics, J.P. SRIVASTAVA (PHI).
- 5. Solid State Physics, GUPTA and KUMAR (K.Nath& Co.)
- 6. Solid State Physic and electronics R.K.PURI & V.K BABBAR (S.CHAND)