

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE Autonomous Siddhartha Nagar, Vijayawada–520010 Re-accredited at 'A+' by the NAAC

ELECTROMAGNETICTHEORY

Offered to : M.Sc.(PHYSICS)	Course Code : 22PH3D1
Course Type : Domain specific elective	
(DSE)	Course : ELECTROMAGNETICTHEORY
Year of Introduction : 2004	Year of offering : 2022
Year of Revision : 2022	Percentage of Revision : 60%
Semester : III	Credits : 4
Hours Taught: 60 hrs. per Semester	Max.Time : 3 Hours

Course Description :Electromagnetic Theory course is designed to review the fundamentals and application of electromagnetic field theory. This course also enables the students to understand all Maxwell's equation in time varying field and their role in solving the problems related to electromagnetics. In this course the students will also learn about waveguides, electric and magnetic dipole, and electric quadrupole radiation besides the relativistic electrodynamics.

CourseObjectives:

- 1. ToUnderstandingoftheimportanceofMaxwell's equationsinsolvingpracticalelectromagnetic fieldproblems.
- 2. To understand the propagation of waves in wave guides.
- 3. To learn about the fields produced by stationary and moving charge charged systems and propagation of electromagnetic fields.
- 4. Tomakethestudentslearnaboutradiationfromelectricandmagneticdipole, and electric quadrupole
- 5. To learn about four vector space and notations
 - CourseOutcomes: Attheendofthis course, students should be able to:

CO1: Derive the electromagnetic wave equations from Maxwell's equations and calculate the energy carried by electromagnetic waves.

CO2: To measure the charge on a surface, calculate the energy stored in a Electromagnetic field and intensity of energy crossing a point in EM field.

CO3: Understand the concept of retarded potentials in electromagnetic fields.

CO4: Derive fields of different systems

CO5:work in four vector space

CO-POMATRIX									
	CO-PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
	CO1	Η					L	М	
22PH3D1	CO2		Н				L	М	
	CO3	Н					L	М	
	CO4		Н				L	М	
	CO5	Н					L	М	

Syllabus				
Unit	Unit LearningUnits			
Ι	ElectromagneticWaves Maxwell's equations in differential and integral forms, Electromagnetic waves in vacuum, Plane waves innon-conducting media: Energy flux in a plane wave, radiation pressure and momentum, plane waves inconducting media, the skin effect, Reflection and refraction of plane waves at a plane interface- Fresnel'slaws;Reflectionfromthesurfaceof ametal. (CO1)	12		
II	Waveguides Introduction-Propagation of Waves between conducting Planes, Waves in Guides of arbitrary Cross- section, Wave Guides of rectangular Cross –section, coaxial wave guide, Resonant Cavities, DielectricwaveGuides (CO2)	12		
III	ScalarandVectorPotentials:IIICoulomb and Lorentz gauge, Wave equation for potentials: Hamiltonian in generalized potential form.Field equations and their solution. Retarded potentials – Radiation from an Oscillating Dipole - LinearAntenna.(CO3)			
IV	Electromagneticradiation: Lienard-Wiechert potentials,Potentials foracharge in uniform motion-Lorentz formula, radiation froman acceleration charged particle at low velocity- Larmor formula,radiation from a charged particlemovinginacircularorbit,electric quadrupoleradiation.(CO4)	12		
V	RelativisticElectrodynamicsReview of special theory of relativity, Lorentz transformations-consequences, MinkowskiMinkowskifourwectors,energy- momentumfourvector,covariantformulationofmechanics,Transformationofelectricandm agnetic fields under Lorentz transformations, field tensor, invariants of electromagnetic field, covariantformulationofelectrodynamics.radiationfromrelativisticparticles (CO5)	12		

ReferenceBooks:

- 1. B.B.LAUDElectromagnetics, NewAge International Publishers, second edition, 2009
- D.J.GRIFFITHSIntroductiontoElectrodynamics,PearsonAddisonWesley,sixthimpression,2008
 S.A.TVA.DP.A.K.A.SUElectrodynamics and Electrodynamics Kedemeth Permeth Public 2010
- ^{3.} SATYAPRAKASHElectromagnetictheoryandElectrodynamics,KedarnathRamnath.Pub.2010