

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE Autonomous Siddhartha Nagar, Vijayawada–520010 Re-accredited at 'A+' by the NAAC

Paper - 4:CONDENSEDMATTERPHYSICS-II

Offered to : M.Sc.(PHYSICS)	Course Code : 22PH4D3		
Course Type : Domain specific elective (DSE)	Course : Condensed Matter Physics – II (Special)		
Year of Introduction : 2022	Year of offering : 2023		
Year of Revision : 2022	Percentage of Revision : Nil		
Semester : IV	Credits : 4		
Hours Taught : 60 hrs. per Semester	Max.Time : 3 Hours		

CourseDescriptionand Purpose:

Condensed Matter Physics–II course will obtain a basic knowledge of the theory of superconductors and the Josephson effect and their applications in cryoelectronics. The study of dielectric properties concerns storage and dissipation of electric and magnetic energy in materials.

Course Objectives:

- 1. To understand the principles of some crystal growth techniques.
- 2. To understand the basic concepts of superconductivity
- 3. To understand the different phenomena where superconductivity is applied.
- 4. To understand the basic concepts of dielectrics
- 5. To understand the basic concepts of ferroelectrics.

Course Outcomes: At the end of this course, students should be able to:

- CO1: Apply some crystal growth techniques to form crystals
- CO2: Analyse the basic concepts of superconductivity
- CO3: Analyse different phenomena involving superconductivity and their applications
- CO4: Analyse the basics of dielectrics and their applications

CO5: Analyse the basics of ferroelectrics and their applications

CO-POMATRIX								
	CO-PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	CO1	Н					L	М
22PH4D3	CO2	Н	М				L	М
	CO3		Н				L	М
	CO4		Н				L	М
	CO5	Н	М				L	М

Syllabus					
Unit	Learning Units	Lecture Hours			
Ι	CrystalGrowthTechniques Bridgeman - Czochralski - Liquid Encapsulated Czochralski (LEC) growth techniques - zone refining andfloating zone growth - chemical vapour deposition (CVD) - Molecular beam epitaxy - vapourphaseepitaxy- hydrothermalgrowth- Growthfrommeltsolutions- Flamefusionmethod.	12			
Π	Superconductivity-IntroductionMeissnereffect, Isotope effect, specific heat, thermal conductivity and manifestationofenergygap,Londonequations,typeIandtypeIIsuperconductors,Quantumtunnelling, Cooperpairingduetophonons,BCStheoryofsuperconductivity.	12			
III	ApplicationsofSuperconductivityGinzburg - Landau theory and application to Josephson effect - dcJosephsoneffect,acJosephsoneffect,macroscopicquantuminterference,applicationsofsuperconductivity,hightemperaturesuperconductivity.	12			
IV	Dielectrics Introduction,Dipolemoment,Varioustypesofpolarization– Electronic,ionic,andorientationpolarization, Macroscopic description of the static dielectric constant, The internal field according toLorentz,Clausius- Mossottiequation,Thestaticdielectricconstantofsolids,Complexdielectriccon stant, Frequency dependence of dielectric constant, Dielectric loss, Effect of temperature on dielectricconstant,Applicationsofdielectrics.	12			
V	Ferroelectrics Generalproperties offerroelectric materials. Classification and properties of representa tive ferroelectrics - Dipole theory of ferroelectricity, objections against the dipole theory, Ionic displacements and the behaviour of BaTiO3 above Curie temperature, theory of spontaneous polarization fBaTiO3, Ferroelectric domains.	12			

TextandReferenceBooks:

- 1. SolidStatePhysics,A.J.DEKKER(Macmillan).
- 2. IntroductiontoSolidStatePhysics,CHARLES KITTEL(JohnWiley&Sons).
- 3. SolidStatePhysics,GUPTAandKUMAR (K.Nath&Co.).
- $\label{eq:solid_state} 4. \ \ SolidStatePhysics, S.O.Pillai (NewAgeInternational).$