

Course Code 23BCMAL234

Title of the Course SOFTWARE ENGINEERING

Offered to: (Programme/s) B.C.A Hons

L 4 T 0 P 0 C 3

Year of

Introduction:
2024-25 Semester: 3

Course Category:
Major

Theory

Course Relates

to:

Global / National / Regional /

Local

Year of Revision: Percentage:

Type of the Course: Skill development

Crosscutting Issues of the Course

:

Pre-requisites, if any Basic Computer Skills and Programming Concepts

Course Description:

The course is to assist the student in understanding the basic theory of software engineering,

and to apply these basic theoretical principles to a group software development project.

Program Design Tools:

1. To draw dataflow diagrams using Microsoft Visio Software, SmartDraw,

2. To draw UML diagrams using Rational Rose Software, Star UML, etc.

Course Aims and Objectives:

S.NO COURSE OBJECTIVES

1 Grasp fundamental software engineering concepts, methodologies, and principles

2 Known about ethical responsibilities of software engineers.

3
Gain the ability to design software systems that are modular, scalable, and

maintainable.

4
Study the cognitive, physical, and social aspects of human interaction with

technology.

5
Learn techniques for software testing and quality assurance and theoretical

knowledge to real-world scenarios through case studies and practical exercises..

Course Outcomes

At the end of the course, the student will be able to…

CO

NO
COURSE OUTCOME BTL PO PSO

CO1
Understand the requirements of the software projects.

K2 1,2 1

CO2 Ability to analyze software requirements with existing tools K4 1,2 1

CO3 Apply different testing methodologies K3
1,2,

7
1

CO4
Understand and apply the basic project management practices in

real life projects

K2,

K4
1,2 1

CO5 Apply on software projects K4 1,2 1

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate;

K6: Create

CO-PO MATRIX

CO NO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PSO1 PSO2

CO1 3 2

 2

CO2 3 2

 3

CO3 3 2

3 2

CO4 3 2

 2

CO5 3 2

 3

Use the codes 3, 2, 1 for High, Moderate and Low correlation Between CO-PO-PSO

respectively

Course Structure:

Unit – 1 : (10Hrs)

Introduction to Software Engineering: The Software Engineering – Evolution and impact,

Software Development Projects, Software Process and Project Metrics, Emergence of

Software Engineering, Computer Systems Engineering,

Software Life cycle models: Need for life Cycle model, classical waterfall model, Iterative

waterfall model, V-model, Prototyping model, Evolutionary model, Spiral model, Agile

Development Models, Comparison of different life cycle models.

Description:

Software Engineering is the systematic application of engineering principles to the

development, operation, maintenance, and retirement of software. It's a discipline focused on

producing high-quality software that meets user needs within budget and on time.

Learning Outcomes:

 Understanding software project management principles.

 Proficiency in software development tools and environments.

 Knowledge of software design patterns and architectures.

Examples:

Conduct workshops and training sessions to ensure all team members understand the

principles and practices of software engineering. Create a repository of reference materials

and best practices

Exercises

Analyze the size factors of a software project Building online stores, payment gateways

Specific Resources: (web)

Prof. Rajib Mall, Assistant Professor, Department of Computer Science and

Engineering, IIT Kharagpur

https://youtu.be/Ln_LP7c23WM

UNIT – II (12Hrs)

Software Project Management: Responsibilities of a Software Project Manager, Project

planning, Metrics for Project size estimation and scheduling.

Requirement Analysis: Requirements gathering and analysis, Software Requirements

Specification ___ contents of the SRS document, Functional requirements, Traceability,

Characteristics of good SRS DOCUMENT, Organization of the SRS document.

Description:

Software cost estimation is the process of predicting the financial resources required to

develop and maintain a software system. Accurate cost estimation is crucial for project

planning, budgeting, and resource allocation. Various techniques are employed to estimate

software costs

Learning Outcomes:

 Understand the concept of software cost estimation

https://youtu.be/Ln_LP7c23WM

 Identify key factors

 Apply various cost estimation techniques

 Estimate staffing levels

 Determine the factors influencing software maintenance costs

 Create comprehensive software requirements specifications

 Utilize formal specification techniques

 Select appropriate languages and processors

 Evaluate the impact of software requirements on project costs

Examples:

 Detailed Explanation of the COCOMO Model

Exercises:

 The basic COCOMO formula is:

Effort=a×(KLOC)
b

Where:

 Effort is the number of person-months.

 KLOC is the estimated number of thousands of lines of code.

 a and b are coefficients that vary depending on the project type (organic, semi-

detached, or embedded).

For example, for an organic project: a=2.4, b=1.05a = 2.4, \, b = 1.05a=2.4,b=1.05

Suppose we estimate the size of the software to be 50 KLOC:

Specific Resources: (web)

Prof. Rajib Mall, Assistant Professor, Department of Computer Science and

Engineering, IIT Kharagpur

https://youtu.be/ilHPCbkZLV4

UNIT – III (12Hrs)

Software design: Desirable characteristics of a good software design, Cohesion and coupling,

Layer Arrangement of Modules, Function-oriented design and Object-oriented design.

Function-oriented software Design: Overview of SA/SD methodology, structured analysis,

Data Flow Diagrams, Structured Design and Detailed Design.

Description:

https://youtu.be/ilHPCbkZLV4

Software design is the process of conceptualizing the software solution to a problem,

transforming user requirements into a suitable form, and producing a design document based

on the customer requirements. It's a crucial phase that bridges the gap between requirements

analysis and software implementation.

Learning Outcomes:

 Define software design

 Transform user requirements

 Apply fundamental design concepts

 Utilize various design notations

 Employ different design techniques

 Conduct detailed design

 Design software for real-time and distributed systems

 Develop comprehensive test plans to ensure software quality.

 Participate in software design reviews

Examples:

 Software Design for an E-Commerce Platform

Exercises:

 Represent Design Notations for e-commeerce platform

UML Diagrams

 Class Diagrams: Represent classes and relationships in each module.

 Sequence Diagrams: Show interactions between objects during user

registration, product search, order placement, and payment processing.

 Data Flow Diagrams (DFDs)

 Illustrate how data flows through the system, from user inputs to database

storage and retrieval.

Specific Resources: (web)

Prof. Mythii Vutukuru, assistant Professor, IIT Bombay, software Design,

https://youtu.be/3fLahzQr8EI?list=PLDW872573QAZNlUzWVzoU8cCadXg1NUGK

UNIT IV (12Hrs)

User interface design: Characteristics of good user interface design, Basic concepts, Types

of user interfaces, component-based GUI development, A user interface Design Methodology

https://youtu.be/3fLahzQr8EI?list=PLDW872573QAZNlUzWVzoU8cCadXg1NUGK

Unified Modeling Language: Overview of Object-oriented concepts, Unified Modeling

Language, UML diagrams, use case model class diagrams, Interaction diagrams, Activity

diagrams, state chart diagrams

Description:

User Interface (UI) design is the process of creating effective interactions between humans

and computer systems. It's about designing the look, feel, and behavior of software

applications to ensure they are user-friendly, efficient, and enjoyable to use.

Learning Outcomes:

 Define user interface design.

 Apply human factors principles.

 Understand the fundamentals of human-computer interaction.

 Develop effective user interfaces.

 Create visually appealing and intuitive user interfaces.

 Evaluate user interface designs.

 Design user interfaces for specific user groups.

 Apply user interface design principles to real-time systems .

 Stay updated on emerging trends and technologies.

Examples:

 User Interface Design for a Real-Time Patient Monitoring System

Exercises:

Example Interface Design:

Dashboard:

 Patient List: A list of all monitored patients with summary information (name, room

number, key vital signs).

 Critical Alerts: A section for critical alerts, sorted by severity and time.

 Navigation: Easy access to patient detail views, settings, and system logs.

Patient Detail View:

 Vital Signs Graphs: Real-time graphs showing trends for heart rate, blood pressure,

temperature, etc.

 Alerts History: A log of all alerts for the patient, with timestamps and statuses.

 Actions: Buttons for common actions, such as acknowledging alerts, adding notes, or

calling for assistance.

Settings and Customization:

 Alert Thresholds: Interface for setting and adjusting alert thresholds for different

vital signs.

 Display Options: Options for customizing the layout, themes, and data visibility.

Specific Resources: (web)

Dr. Samit Bhattacharya, Assistant Professor, Computer Science and Engineering, IIT

GUWAHATI, Design & Implementation of Human-Computer Interfaces

https://youtu.be/uFYuHHglC6U?list=PLwdnzlV3ogoVKbbd4bwgSoga7EEuX5kFf

UNIT V (14Hrs)

Software quality and testing: Software Quality Assurance - Quality metrics - Software

Reliability - Software testing - Path testing – Control Structures testing - Black Box testing -

Integration, Validation and system testing - Reverse Engineering and Reengineering.

CASE Tools: Projects management, tools - analysis and design tools – programming tools -

integration and testing tool - Case studies.

Description:

software quality and testing are critical for producing reliable and efficient software. CASE

tools can significantly enhance the software development process by automating tasks and

improving productivity

Learning Outcomes:

 Define software quality assurance.

 Identify and apply quality metric.

 Explain the concept of software reliabilit.

 Design and execute various software testing techniques.

 Conduct integration, validation, and system testing.

 Apply reverse engineering and reengineering techniques to analyze and modify

existing software systems.

 Utilize CASE tools to support software quality assurance and testing activities.

 Create and manage software test plans and test cases.

 Analyze test results and generate test reports to identify defects and recommend

corrective actions.

 Understand the importance of software quality

Examples:

 Implementing Test Automation for a E-commerce Platform

Exercises:

https://youtu.be/uFYuHHglC6U?list=PLwdnzlV3ogoVKbbd4bwgSoga7EEuX5kFf

 Client: A large online retailer looking to improve software quality and reduce testing

time.

 Project: Implement a test automation framework for functional, regression, and

performance testing of their e-commerce platform.

Specific Resources: (web)

Prof. Rajib Mall, Assistant Professor, Department of Computer Science and

Engineering, IIT Kharagpur

https://youtu.be/ilHPCbkZLV4

Choose any two of above case studies and do the following exercises for that Case Study

1. Write the software requirements specification document

2. Draw the entity relationship diagram

3. Draw the data flow diagrams

4. Draw use case diagrams

5. Draw activity diagrams for all use cases

6. Draw sequence diagrams for all use cases

7. Draw collaboration diagram

8. Assign objects in sequence diagrams to classes and make class diagram.

Student Activity:

1. Visit any financial organization nearby and prepare requirement analysis report

2. Visit any industrial organization and prepare risk chart

Text Books:

1. Fundamentals of Software Engineering, Fourth Edition, Rajib Mall, PHI

References:
 1. R.Fairley, Software Engineering Concepts, Tata McGraw-Hill, 1997.

2. Software Engineering, H. Sommervill Ian , Addition Wesley Pub. Co.

3. Software Engineering: An object Oriented Perspective by Braude, E.J., Willey, 2001

 SEMESTER -END QUESTION PAPER STRUCTURE

https://youtu.be/ilHPCbkZLV4

Course Code & Title of the Course: 23BCMAL234

Offered to: B.C.A Hons.

Category: SEMESTER: 3

Max. Marks 70

Max.Time 3 Hrs

 Section A: Short Answer Questions (20 Marks)
Answer All questions. Each question carries 4 Marks.

1 (a) Why Software Engineering is required?(K2)

 OR

 (b) What are the phases of the waterfall model? (K1)

2 (a) Summarize responsibilities of software manager. (K3)

 OR

 (b) Summarize Characteristics of SRS Document. (K3)

3 (a) What is DFD? Explain with an example. (K2)

 OR

 (b) Write about Modular Design. (K1)

4 (a) Differentiate Graphical user interface and text - based user interface. (K3)

 OR

 (b) List and explain various types of user interfaces. (K2)

5 (a) Write about Glass Box testing. (K1)

 OR

 (b) Summarize Quality metrics (K3)

Section B: Long Answer Questions (50 Marks)

Answer All questions. Each question carries 10 Marks.

6 (a) Compare different software development life cycle modes. (K3)

OR

 (b) Explain about spiral model. (K2)

7 (a) What are the reas6ns to spend time and resources to develop a SRS

 document. (K1)

 OR

 (b) Explain metrics for project size estimation. (K2)

8 (a) Explain about coupling and cohesion. (K2)

 OR

(b) Write about overview of SA/SD methodologies. (K1)

9 (a) Explain different types of user interfaces (K2)

 OR

 (b) Explain IJML class diagrams with an example (K2)

10 (a) What is program testing? Briefly explain the following tests:,

a) Unit testing.

b) Block box testing

c) White box testing (K1)

 OR

 (b) Discuss analysis and design tools. (K2)

