

23MAMAL123: DISCRETE MATHEMATICS

Offered to: B.Sc. Hons (C.Sc., DS, DA, AI)

Year of Introduction: 2023-24

Course Type: Major 4 (Core -TH)

Year of offering: 2023 - 2024

Semester: II 75 Hrs Credits: 4

Course Outcomes

S. No	At the end of the course the student will be able to	PO
	Upon successful completion of this course, students will be able to:	Mapping
CO1	Solve problems related to DNF and CNF.	PO1
CO2	Understanding the concepts related to counting & advanced counting.	PO6
CO3	Derive the generating function of a sequences.	PO7
CO4	Understand basic concepts of graphs.	PO2
CO5	Determine Euler and Hamiltonian paths and circuits in a graph.	PO7

CO-PO MATRIX									
СО-РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
CO1	2								
CO2						3			
CO3							1		
CO4		2							
CO5							3		

UNIT – I: MATHEMATICAL LOGIC

(15hrs)

- 1.1 Connectives, Negation, Conjunction, Disjunction, Conditional and Bi-Conditional statements.
- 1.2 Tautologies, Equivalence of formulae, Duality.
- 1.3 Tautological implications.
- 1.4 Disjunctive Normal Forms (using truth tables).
- 1.5 Conjunctive Normal Forms (using truth tables).

UNIT – II: COUNTING PRINCIPLES

(15hrs)

- 2.1 Basics of Counting.
- 2.2 Combinations and Permutations.
- 2.3 Enumeration of Combinations and Permutations.
- 2.4 Enumerating Combinations and Permutations with repetitions.

2.5 Enumerating Permutations with Constrained repetitions.

UNIT – III: RECURRENCE RELATIONS

(15hrs)

- 3.1 Generating functions of sequences
- 3.2 Calculation coefficients of generating functions.
- 3.3 Recurrence relations.
- 3.4 Solving recurrence relations by substitution and generating functions.

UNIT - IV: GRAPHS

(15hrs)

- 4.1 Graphs, Simple Graph, Multiple Graph, Undirected and Directed graph, degree of vertex, the Handshaking theorem.
- 4.2 Types of Graphs
- 4.3 Sub graphs and Isomorphism of graphs
- 4.4 Operations of graphs.
- 4.5 Adjacency and Incidence matrix
- 4.6 Paths, cycles, connectivity.

UNIT-V: CONNECTED GRAPHS

(15hrs)

- 5.1 Connectedness in undirected graph
- 5.2 Connectedness in directed graphs
- 5.3 Eulerian graph, Eulerian trail, Eulerian Circuit, Euler Circuit, Euler path
- 5.4 Theorems on Eulerian graphs related problems
- 5.5 Hamilton circuits, Hamilton path, Hamilton graph.

Unit I from prescribed book (2), remaining units from prescribed book (1).

TEXT BOOKS:

- 1. A Text Book of Discrete mathematics for computer scientists and mathematics, Joe L. Mott, Abraham Kandel, Theodore, Prentice Hall of India Private Limited. 2nd Edition 2009.
- 2. A Text Book of Discrete mathematics for computer scientists and mathematics, Joe L. Mott, Abraham Kandel, Theodore, Prentice Hall of India Private Limited. Third Edition- 2006.

REFERENCE BOOKS:

1. A Text Book of Discrete Mathematics, Dr. Swapan Kumar Sarkar. S. Chand Publication, 2012.

Student Activities:

- 1) Class-room activities: Power point presentations, Assignments.
- 2) Library activities: Visit to library and preparation of notes for Assignment problems.
- 3) Activities in the Seminars, workshops and conferences: Participation/presentation in seminar/workshop/conference.

CO-CURRICULAR ACTIVITES:

- Quiz Competitions, Seminars
- Group Discussions

23MAMAL123: DISCRETE MATHEMATICS

SEMESTER - II

3hrs.	Max. Marks: 70		
MODE	L QUESTION PAPER		
	SECTION – A	$(5 \times 4 = 20 \text{ Marks})$	
Answer the following Questions			
1.(a) Define Conjunction and Disjunction.		(CO1, L1)	
	(OR)		
(b) Construct the truth table for $(\sim P)VQ$.		(CO1, L1)	
2. (a) When two different dice are rolled, fir	nd in how many ways can v	we get a sum of 4 or 8? (CO2,L2)	
	(OR)		

(b) Find the number of arrangements of the letters in the word TALLAHASSEE. (CO2,L2)

3. (a) Find the coefficient of x^{20} in $(x^3 + x^4 + x^5 +)^5$. (CO3,L3)

(OR)

(b) Prove that
$$F_0 + F_1 + F_2 + \dots + Fn = F_{n+2} - 1$$
.

(CO3, L3)

Time:

4.(a) Draw an undirected graph for the following adjacency matrix

$$\begin{bmatrix} 2 & 3 & 0 & 0 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 0 \end{bmatrix}_{4x4}$$
(CO4, L3)

(b) State and prove Hand Shaking Theorem.

(CO4, L3)

5.(a) Define Euler circuit and Hamiltonian circuit and give example of each. (CO5, L3)

(OR)

(b) Give an example of a graph which contains an Eulerian circuit that is also a Hamiltonian cycle. (CO5, L3)

SECTION - B

Answer the following Questions

 $(5 \times 10 = 50 \text{ Marks})$

6.(a) Prove that $[(p \land \sim q) \to r] \to [p \to (q \lor r)]$ is a tautology. (CO1, L3)

(OR)

- (b) Obtain the DNF and CNF for $(P \rightarrow (Q \land R)) \land (\sim P \rightarrow (\sim Q \land \sim R))$ (CO1, L3)
- 7.(a) If p(n,r) denotes the number of r permutations of n objects without repetitions , then prove that p(n,r) = n!/(n-r)! (C O2, L3)

(OR)

- (b) There are 30 females 35 males in the junior class, while there are 25 females and 20 males in the senior class. In how many ways can a committee of 10 be chosen so that there are exactly 5 females and 3 juniors on the committee. (CO2, L3)
- 8.(a) Solve $a_n 5a_{n-1} + 6a_{n-2} = 0$, for $n \ge 2$ and $a_0 = 1$, $a_1 = -2$. (CO3, L3)

 (OR)
 - (b) State and prove explicit formula for Fibonacci numbers. (CO3,L2)
- 9. (a) (i) Prove that the degree of a simple graph G on n vertices cannot exceed n-1.
 - (ii) Prove that the maximum number of edges in a simple graph with n vertices is n(n-1)/2. (CO4, L3) (OR)
- (b) Show that the two graphs shown in the figure are isomorphic

(CO4, L3)

10. (a) The minimum number of edges in a connected graph with n vertices is (n-1). (CO5,L3)

(OR)

(OR)

- (b) Give an example of a path which contains:
 - (i) An Eulerian circuit and a Hamiltonian cycle that are distinct.
 - (ii) An Eulerian circuit but not a Hamiltonian cycle. (CO5,L3)