



**PARVATHANENI BRAHMAYYA**  
**SIDDHARTHA COLLEGE OF ARTS & SCIENCE**  
*Autonomous*  
Siddhartha Nagar, Vijayawada-520010  
*Re-accredited at 'A+' by the NAAC*

|                                            |   |              |   |                                                |   |               |          |  |  |  |  |
|--------------------------------------------|---|--------------|---|------------------------------------------------|---|---------------|----------|--|--|--|--|
| <b>Course Code</b>                         |   |              |   | 23BOMAP233                                     |   |               |          |  |  |  |  |
| <b>Title of the Course</b>                 |   |              |   | <b>PLANT BREEDING</b>                          |   |               |          |  |  |  |  |
| <b>Offered to: (Programme/s)</b>           |   |              |   | <b>B.Sc. Hons Botany</b>                       |   |               |          |  |  |  |  |
| L                                          | 0 | T            | 0 | P                                              | 2 | C             | 1        |  |  |  |  |
| <b>Year of Introduction:</b>               |   | 2024-25      |   | <b>Semester:</b>                               |   |               | <b>3</b> |  |  |  |  |
| <b>Course Category:</b>                    |   | <b>MAJOR</b> |   | <b>Course Relates to:</b>                      |   | <b>GLOBAL</b> |          |  |  |  |  |
| <b>Year of Revision:</b>                   |   | <b>NA</b>    |   | <b>Percentage:</b>                             |   | <b>NA</b>     |          |  |  |  |  |
| <b>Type of the Course:</b>                 |   |              |   | <b>Skill development</b>                       |   |               |          |  |  |  |  |
| <b>Crosscutting Issues of the Course :</b> |   |              |   | <b>NA</b>                                      |   |               |          |  |  |  |  |
| <b>Pre-requisites, if any</b>              |   |              |   | <b>KNOWLEDGE OF PLANT DISEASES AT +2 LEVEL</b> |   |               |          |  |  |  |  |

**Course Description:**

An overview of the course content and objectives.

This course is an introduction to the science of plant breeding. This course introduces the fundamental concepts of plant breeding and plant adaptation that are applicable to agricultural and natural systems. Extensive industry engagement is also undertaken as part of the course curriculum where students connect with industry leaders in the plant breeding discipline, whether in broad-acre cropping (e.g. wheat, barley, canola, faba bean breeding) or horticulture (e.g. almond breeding). The topics covered include: genetic diversity in relation to adaptation, productivity, pest and disease resistance and end-use quality; strategies for setting breeding objectives and maximizing selection and improvement of key traits; breeding methodologies for self or cross pollinated plants.

**Course Aims and Objectives:**

| S.NO | <b>COURSE OBJECTIVES</b>                          |
|------|---------------------------------------------------|
| 1    | understand the cross-pollination mechanism.       |
| 2    | understand the self-pollination mechanism.        |
| 3    | gain knowledge in modern breeding methods         |
| 4    | understand the hybridization techniques.          |
| 5    | identify the plant variants based on pollination. |

## Course Outcomes

At the end of the course, the student will be able to...

| CO NO | COURSE OUTCOME                                                               | BTL | PO | PSO |
|-------|------------------------------------------------------------------------------|-----|----|-----|
| CO1   | Distinguish self and cross-pollinated plant species based on floral biology. | K2  | 2  | 1   |
| CO2   | Perform skills related to self and cross pollination in plants.              | K6  | 2  | 1   |
| CO3   | Experiment hybridization to produce new varieties.                           | K3  | 2  | 1   |
| CO4   | Apply the principles of inheritance to plant breeding                        | K3  | 2  | 1   |
| CO5   | Identify mutation breeding.                                                  | K1  | 2  | 1   |

| CO-PO MATRIX |     |     |     |     |     |     |     |      |      |
|--------------|-----|-----|-----|-----|-----|-----|-----|------|------|
| CO NO        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 |
| CO1          |     | 2   |     |     |     |     |     | 2    |      |
| CO2          |     | 3   |     |     |     |     |     | 3    |      |
| CO3          |     | 3   |     |     |     |     |     | 3    |      |
| CO4          |     | 3   |     |     |     |     |     | 3    |      |
| CO5          |     | 1   |     |     |     |     |     | 1    |      |

## Course Structure

This lab list covers the key areas of plant breeding course, providing hands-on practice with applying the concepts in plant breeding and pollination methods.

**Unit 1: [Basic concepts of plant breeding]** (6Hrs)

### Lab 1:

Floral biology in a self and a cross pollinated plant species.

- **Dataset (web link) / Experiment:**  
<https://www.youtube.com/shorts/K7wyQZereZg?feature=share>
- **Tasks:** Identification of floral organs.

**Unit 2: [Contrivances for cross pollination]** (6Hrs)

### Lab 1:

(1) Identification and classification of plants based on pollination mechanism.

(2) Pollen viability test.

(3) Observation on pollen germination.

- **Dataset (web link) / Experiment:**  
<https://www.youtube.com/watch?v=GtYHU1Mx4SE&pp=ygUVcG9sbGVuIHZpYWJpbGl0eSB0ZXN0>
- **Tasks:** Identifying the pollen germination of different plant species.

**Unit 3: [Breeding methods in plants]** (6Hrs)

**Lab 1:** Practicing selfing technique.

- **Dataset (web link) / Experiment:**  
[https://www.youtube.com/shorts/atLQPBZ\\_pcs?feature=share](https://www.youtube.com/shorts/atLQPBZ_pcs?feature=share)
- **Tasks:** Differentiating self-pollinating plants.

**Unit 4: [Breeding methods in cross-pollinated plants]** (6Hrs)

**Lab 1:**

- (1) Practicing emasculation technique.
- (2) Practicing crossing technique.
- (3) Estimation of heterosis and inbreeding depression.

- **Dataset (web link) / Experiment:**  
<https://www.youtube.com/shorts/H6rLkcyVXgo?feature=share>
- **Tasks:** Differentiating cross-pollinating plants.

**Unit 5: [Modern methods in plant breeding]** (6Hrs)

**Lab 1:**

- (1) Assessment of genetic variability.
- (2) Studying mutant and polyploids in crop plants.

- **Dataset (web link) / Experiment:**  
[https://www.youtube.com/shorts/l\\_tHc8VuZ2M?feature=share](https://www.youtube.com/shorts/l_tHc8VuZ2M?feature=share)
- **Tasks:** Identification of mutants.

\*\*\*

## **Question Paper Pattern for Practical Course**

### **(A) Semester End Lab Examination**

**23BOMAP233: PLANT BREEDING**

**Offered to: B.Sc. Hons Botany**

**Semester: III**

**Max.Marks: 50 (CIA+SEE)**

**Max. Time: 3 Hrs**

**I. Answer the following.**

**Max. Marks: 30 Marks**

**Q1.** Perform the given experiment 'A' to calculate the percentage of pollen germination. 8M

**Q2.** Perform the given experiment 'B' and identify the seed viability using tetrazolium. 8M

**Q3.** Perform the given experiment 'C'. 8M

**Q4.** Identify and write a note on 'D'. 3M

**Q5.** Identify and write a note on 'E'. 3M

**II Viva**

**3 Marks**

**III Record**

**2 Marks**

### **(B) CONTINUOUS ASSESSMENT(Internal)**

**15 MARKS**

15 marks for the continuous assessment (Day to day work in the laboratory shall be evaluated for 15 marks by the concerned laboratory teacher based on the regularity/record/viva). Laboratory teachers are mandated to ensure that every student completes 80%-90% of the lab assessments.

**TOTAL: (A)+(B) =**

**50 MARKS**

\*\*\*