

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE

Autonomous

Siddhartha Nagar, Vijayawada–520010 Re-accredited at 'A+' by the NAAC

23PHMIL121: MECHANICS, WAVES AND OSCILLATIONS

Offered to: All UG Programs Semester – II

Max. Marks: 100 (CIA: 30 + SEE: 70) 60Hrs Credits: 04

Course Objectives:

1. provide an in-depth understanding of the principles of Newtonian mechanics and apply them to solve problems involving the dynamic motion of classical mechanical systems

- 2. explain the limitations of Newtonian mechanics for motion at very high velocities, and thus introduce the special theory of relativity
- 3. provide hands-on experience to perform experiments to study some properties of matter and oscillations
- 4. By Learning Fourier analysis, students can analyze different mechanical, optical, and electromagnetic waves
- 5. To attain knowledge of Ultrasonic waves and apply it to different fields

Course outcomes:

On successful completion of this course, the students will be able to:

CO1: Application of basic laws of motion to solve various problems related to day-

to-day life

CO2: Understand the applications of mechanics and waves in day-to-day life.

CO3: Utilize mathematical models to represent and solve problems related to real-

world applications

CO4: Ability to recognize the suitable solution with necessary equations, and derive

these equations for certain systems

CO5: Foster the development of a scientific mindset that includes questioning

assumptions and seeking deeper understanding.

CO-PO MATRIX									
	CO-PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
23PHMIL 121	CO1					2			
	CO2						2		
	CO3						2		
	CO4							2	
	CO5						3		

Unit	Learning Units	Lecture Hours
I	A. Mechanics of Particles (5 hrs)	12
	Review of Newton's Laws of Motion, Motion of variable mass	
	system, Multistage rocket, Concept of impact parameter,	
	scattering cross-section, Rutherford Scattering-Derivation.	
	B. Mechanics of Rigid bodies (7 hrs) Rigid body, rotational kinematic relations, Equation of motion	
	for a rotating body, Angular momentum, Euler equations,	
	Precession of a spinning top, Precession of the equinoxes	
	A. Celestial mechanics Central force - definition and examples, characteristics of central	12
II	forces, conservative nature of central forces, Equation of motion	
	under a central force	
	B. Orbital mechanics	
	Kepler's laws of planetary motion- Proofs, Motion of satellites –	
	escape velocity, orbital velocity	
	A. Frames of reference and transformation (5 hrs) Galilean transformations, Michelson-Morley experiment &	12
III	negative result. Postulates of Special theory of relativity,	
	B. Consequences of relativistic transformations (7 hrs)	
	Lorentz transformation, time dilation, length contraction,	
	Einstein's mass-energy relation	
IV	A. Undamped, Damped, and Forced oscillations: (07 hrs) Simple harmonic oscillator, damped harmonic oscillator, forced	12
	harmonic oscillator - differential equations and its solutions,	
	Resonance, Logarithmic decrement, Relaxation time and Quality	
	factor.	
	B. Fourier analysis (05 hrs)	
	Fourier theorem (Statement & limitations), evaluation of the	
	Fourier coefficients using Fourier's theorem, analysis of periodic	
	wave functions - square wave	
V	A. Vibrating Strings: (07 hrs)	12
	Transverse wave propagation along a stretched string, General	
	solution of the wave equation and its significance, Modes of	
	vibration of stretched string clamped at ends, Overtones, and	

Harmonics.

B. **Ultrasonics**: (05 hrs)

Ultrasonics, General Properties of ultrasonic waves, Production of ultrasonics by piezoelectric and magnetostriction methods, Applications of ultrasonic waves

TEXT BOOKS

1. B. Sc. Physics, Vol.1, Telugu Academy, Hyderabad

REFERENCE BOOKS:

- 1. Fundamentals of Physics Vol. I Resnick, Halliday, Krane, Wiley
- 2. Waves and Oscillations. N. Subramanyam and Brijlal, Vikas Pulications.
- 3. Science and Technology of Ultrasonics- Baldevraj, Narosa, New Delhi, 2004

Model Question Paper

23PHMIL121:Mechanics, Waves and Oscillations

Max.Time: 3 hours Maximum Marks: 70

SECTION-A

Answer the following:

 $5 \times 10 = 50 \text{ M}$

A) What is Rutherford scattering? Obtain an expression for the number of particles scattered per unit area. (L1, CO1).

(OR)

- B) What is precessional motion? Find the angular velocity of the precession of a spinning top. Show that the rate of precession is independent of mass but depends on the distribution of mass. (L1, CO2).
- 2. A) What is conservative force? Show that central forces are conservative. (L2, CO2).

(OR)

- B) State Kepler's third law of motion. And prove that the square of period of revolution of a planet moving in a circular orbit round the sun is proportional to the cube of its distance from the sun. (L2, CO2)
- A) State the fundamental postulates of special theory of relativity and deduce the Lorentz transformations. (L2, CO3)

(OR)

- B) Describe the Michelson-Morley experiment and explain the physical significance of negative results. (L2, CO3)
- 4 A) What are damped oscillations? Derive the differential equation of the damped Harmonic oscillator and discuss the case of under-damping. (L2, CO3).

(OR)

- B) State the Fourier Theorem and evaluate Fourier coefficients. (L2, CO4).
- A) What are transverse waves? Obtain the equation of velocity of a transverse wave in a wire kept under tension. (L3. CO5).

(OR)

B) What are ultrasonics? Describe the Magnetostriction method of producing ultrasonics (L3, CO5).

SECTION-B

Answer the following questions:

3x4=12M

6. A) State Newton's laws of motion and give two examples each. (CO1, L1)

(OR)

- B) Explain central forces with examples. (CO2, L1)
- 7. A) Explain time dilation. (CO3, L1)

(OR)

- B) What is logarithmic decrement and relaxation time? (CO4, L1)
- 8. A) Explain overtones and harmonics. (CO5, L1)

(OR)

B) Write any four applications of Ultrasonics

Section - C

Answer the following:

2X4 = 8M

9. A) The kinetic energy of a metal disc rotating at a constant speed of 5 revolutions per second is joules. Find the angular momentum of the disc. (CO2, L3)

(OR)

- B) If the Earth is one-half of its present distance from the sun, what will be the number of days in a year (CO2, L3)
- 10. A) If the energy note of frequency 100Hz decreases to one-half of its original value in one second, calculate the Q-factor, (CO4, L3)

(OR)

B). A piezoelectric crystal has a thickness of 0.002m. If the velocity of the sound wave in crystal is 5750m/s, calculate the fundamental frequency of the crystal. (CO5, L3)
