

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE

Autonomous Siddhartha Nagar, Vijayawada–520010 Re-accredited at 'A+' by the NAAC

Course Code				23CHMAL232					
Title of	the Cours	se		ORGANIC CHEMISTRY (Halogen and Oxygen containing organic compounds)					
Offered to: (Programme/s)				B.Sc. Hons Chemistry					
L	4	Т	0	Р	0	С		3	
Year of Introduction: 2024-25		Semester:			3				
Course Categor	ry:	M	AJOR	Course Rela	ates to:	GLOBAL			
Year of Revision: 2024			024	Percentage	-				
Type of the Course:				Employability					
Crosscutting Issues of the Course :				Professional Ethics					
Pre-requisites, if any				23CHMAL121, 23CHMAL122					

Course Description:

Halogen and oxygen-containing organic compounds are a diverse group of chemicals that feature halogen atoms (such as fluorine, chlorine, bromine, or iodine) and oxygen atoms in their molecular structures. These compounds are prevalent in various chemical industries and have a wide range of applications. Particularly halogenated organics their toxicity and environmental impact require careful handling and disposal. Oxygen-containing compounds play crucial roles in everyday life, from industrial applications to biological processes, and are fundamental to the study and practice of organic chemistry.

Course Aims and Objectives:

S.N O	COURSE OBJECTIVES
1	To study the unique chemical properties of halogen compounds, such as their reactivity, electro negativity, and ability to form stable bonds.
2	To explore the chemical properties of alcohols and phenols, including acidity, hydrogen bonding, solubility, and their reactions with other compounds.
3	To Understanding the chemistry of halogen and oxygen-containing organic compounds is crucial for various applications
4	To remember Oxygen-containing organic compounds include a variety of functional groups, each with distinct properties and reactivity's.
5	To remember structural components of carbohydrates, and their classification.

Course Outcomes

At the end of the course, the student will be able to...

CO NO	COURSE OUTCOME	BTL	РО	PSO
C01	Remember the concept of SN1and SN2and SNi mechanisms. Halogenated organic compounds	K1	PO2	PSO1
CO2	Remember the reactivity of alcohols and phenols. Oxygen containing Organic compounds	K1	PO2	PSO1
CO3	Understand the skills required to propose various mechanisms Halogen and Oxygen containing organic compounds	K2	PO1	PSO1
CO4	Apply the concepts for synthesizing various oxygen containing organic compounds		PO7	PSO3
CO5	Apply Interconvertion of the monosaccharides.	K3	PO7	PSO2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

CO-PO MATRIX										
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
C01		2						1		
CO2		2						2		
CO3	2							2		
CO4							2			1
CO5							3		2	

Use the codes 3,2,1 for High, Moderate and Low correlation Between CO-PO-PSO respectively

Syllabus

Unit – I Halogen compounds

Alkyl halides: Preparation of alkyl halides from i) alkanes, ii) alkenes and iii) alcohols. Properties - nucleophilic substitution reactions–SN1and SN2 and SNi mechanisms with energy profile diagrams, stereo chemical aspects and effect of solvent. Williamson's synthesis.

Aryl halides: Preparation i) from phenols ii) Sandmeyer's reaction, nucleophilic aromatic substitution (Benzyne mechanism);relative reactivity of alkyl, allyl, vinyl and benzyl, aryl halides towards nucleophilic substitution reactions.

Unit II Alcohols and Phenols

Alcohols: Preparation of 1^{0} , 2^{0} , 3^{0} alcohols from Grignard's reagent, Bouveault–Blanc Reduction; Chemical properties – substitution of –OH by using PC15, PC13, PBr3, SOC12 and with HX / ZnC12, Oxidation of alcohols with PCC, PDC; Oxidation of diols by HIO4 and Pb(OAc)4, Pinacol Pinacolone arrangement with mechanism, relative reactivity of 1° , 2° , 3° alcohols.

Distinguish of alcohols by Lucas reagent and Vector's Mayer's test

Phenols: Preparation from diazonium salt and Cumene, **acidic nature of phenols**. Reactions and mechanism–Reimer– Tiemann,Kolbe–Schmitt Reactions, Fries and Claisen rearrangements.

Unit III Carbonyl Compounds

Preparation from-Acid chlorides,1,3-dithiane and nitriles; Structure and reactivity of carbonyl group, Nucleophilic addition reactions with HCN, NaHSO3, **RMgx**, **Pcl5 with mechanism** and **formation of Acetals and Hemi Acetals** alcohols. Addition- elimination reactions with hydroxylamine, hydrazine, phenyl hydrazine, 2,4DNP, semicarbazide. Oxidations and reductions **Bayer Villiger oxidation**, **Oppenaur oxidation**, **Ozonolysis**(Clemmensen's, Wolf–Kishner's, withLiAlH4 & NaBH4).

Reaction & Mechanism- Aldol condensation, Cannizzaro reaction, Perkin reaction, Benzoin condensation, Claisen-Schmidt reaction, Haloform reaction

(9 h)

(9 h)

(9 h)

Unit-IV Carboxylic acid and Active methylene Compounds

Carboxylic Acids: Preparation from Grignard reagent and hydrolysis of nitriles, Reactions of monocarboxylic acids- Reactions involving -H, -OH and-COOH groups, formation of salts, esters, acidchlorides, amides and anhydrides. Degradation of carboxylic acids by Huns- Diecker's reaction, decarboxylation by Schmidt reaction, Arndt-Eistert synthesis, halogenation by Hell- Volhard- Zelinsky reaction. Mechanisms of acidic and alkaline hydrolysis of esters, Reformatsky reactions, Curtius rearrangement.

Active methylene compounds: Ketoenol tautomerism, preparation of Aceto Acetic Ester (AAE) by Claisen condensation with mechanism, synthetic applications of AAE in the preparation of mono carboxylic acids, di carboxylic acids, α , β -unsaturated acids and heterocyclic compounds.

Unit V: Carbohydrates

(9h)

Classification and their biological importance, Monosaccharides: Structural elucidation of glucose and fructose, epimers and anomers, mutarotation, determination of ring size of glucose and fructose, Haworth projections and conformational structures; Inter conversions of aldoses and ketoses; Killiani-Fischer synthesis and Ruff degradation; Disaccharides– Haworth structure of maltose, lactose and sucrose.

II. List of Reference Books

1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

2. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson Education).

3. Guide book to Mechanism in Organic Chemistry by Peter Sykes 6th edition, 1985.

References-weblinks

- 1. <u>https://www.britannica.com/science/halogen</u>
- 2. <u>https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry (Morsch_et_al.)/17</u> %3A_Alcohols_and_Phenols/17.S%3A_Alcohols_and_Phenols_(Summary)
- 3. https://www.britannica.com/science/carbonyl-group
- 4. <u>https://chem.libretexts.org/Ancillary_Materials/Reference/Organic_Chemistry_Glossary/Active_Methylene_Compound</u>
- 5. <u>https://my.clevelandclinic.org/health/articles/15416-carbohydrates</u>

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE Autonomous

Siddhartha Nagar, Vijayawada–520010 *Re-accredited at 'A+' by the NAAC*

SEMESTER -END QUESTION PAPER

Course Code & Title of the Course:	23CHMAL232 ORGANIC CHEMISTRY (Halogen and Oxygen containing organic compounds)
Offered to:	BSc –Hons CHEMISTRY
Category:	SEMESTER: III
Max. Marks	70
Max.Time	3 Hrs

Section A: Short Answer Questions (20 Marks)

Answer All questions. Each question carries 4 Marks.

Q1	(a) State any two methods for preparation of alkyl halides	K1
	OR	
	(b) Tell relative reactivity of alkyl, allyl, vinyl and benzyl, aryl halides	K1
Q2	(a) State Pinacol Pinacolone arrangement with mechanism	K1
	OR	
	(b) Tell the Bouveault–Blanc Reduction	K1
Q3	(a) Interpret the mechanism of Clemmensen reduction.	K2
	OR	
	(b) Interpret the mechanism of Cannizzaro reaction	
Q4	(a) Explain Ketoenol tautomerism with suitable examples.	K3
	OR	
	(b) Interpret the mechanism Curtius rearrangement.	K3
Q5	(a) Discuss Structural elucidation of glucose	К2
×-	OR	182
	(b) Explain the Haworth structure of maltose and sucrose	K2

Section B: Long Answer Questions (50 Marks) Answer All questions. Each question carries 10 Marks.							
Q6	(a) Explain mechanisms and stereo chemistry of SN1 and SN2 reactons						
	OR						
	(b) Describe the Sandmeyer's reaction and nucleophilic aromatic substitution	K2					
Q7	(a) Explain Oxidation of diols by HIO4 and Pb(OAc)4 K2 OR	2					
	(b) Describe the mechanism of Reimer-Tiemann and Kolbe-Schmitt Reaction	ons K2					
Q8	(a) Interpret the mechanism of 2,4DNP and Bayer Villiger oxidation	K3					
	OR						
	(b) Interpret the mechanism of Aldol condensation and Perkin reaction K3	j					
Q9	(a) Explain Mechanisms of acidic and alkaline hydrolysis of esters K3 OR	i					
	(b) Explain the preparation and synthetic applications of Aceto AceticEster.	K3					
Q10	(a) Illustrate the mechanism of Killiani-Fischer synthesis and Ruff degradatio OR	n K3					
	(b)Explain Classification and their biological importance of Monosaccharides	. K3					