

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE Autonomous

Siddhartha Nagar, Vijayawada-520010 Re-accredited at 'A+' by the NAAC

23MAVAI 101. FI EMENTADV NIIMBED THEODV

23MAVAL101: EL	EMENTARY	Y NUMBER THEORY
Offered to: ALL UG PROGRAMS		Course Type: Value Added Course
Semester: I	45 Hours	Credits: 2
Objectives: To enhance the computational skills and application skills.		
 Unit–I:DIVISIBILITY 1.1 Introduction and basic properties 1.2 Well–Orderingprinciple ,Definitiono 1.3 Divisionalgorithmandrelatedproblem 1.4 GCD,EuclideanAlgorithm,problems Unit –II:PRIMES 2.1 Relativelyprimedefinition,Euclid'sLee 	15	15 periods 15 periods nentaltheoremofArithmetics
2.2 Thenumberofdivisorsofa positive integerN		
2.3 Highestpowerofaprime numbercontainingn!Problems		
2.4 Bracketfunction		
Unit-III:CONGRUENCES15 periods3.1 Congruence modulom definition3.2 Congruenceclasses, linearcongruencedefinition, examples, theorems, problems3.3 Inversemodulom3.4 Euler'sØ functiondefinitionand theorems3.5 Fermat's little theorem and Wilson's theorem5TUDENTACTIVITIES:		
 Classroomactivities:Powerpointpresentations,Assignments Libraryactivities:Visittolibraryandpreparationof notesfor assignmentproblems Activities in the seminars, workshops and conferences: Participation / presentation inSeminars/workshops/conferences 		
CO-CURRICULARACTIVITIES:		
 Quiz competitions, seminars, Groupdiscussions Text Book: A text book of Mathematics B.A/B.ScVol– 1, V.VenkateswararaoN.Krishna Murthy BVSSSharma & S.Anjaneya Sasthry, S.Chand& Co.Ltd ,1988 Reference books: A text book of Mathematics Vol– 1, A.Anjaneyulu, DeepthiPublications,1988 		

Question Paper Pattern:

(a) Continuous Assessment: 15Marks

(b) Semester End Exam: 35 Marks

SEE Consists of two sections-

(i)Section A: Set 5 questions, atleast one question from each unit answer any Three out of 5 questions. Each

question carries 5 Marks(5M X3=15)

(ii)Section B: Set 3 questions, one from each unit . Each question carries 10 Marks(10M X 2 = 20)

MODEL QUESTION PAPER

23MAVAL101: ELEMENTARY NUMBER THEORY

Max. Marks: 35M

SECTION – A

Answer any THREE of the following

- 1. Prove that every odd integer is of the form 4n+1 or 4n-1
- 2. If $a, b \in Z, b \neq 0$ and $a = bq + r, 0 \leq r < |b|$ then Prove that (a, b) = (b, r).
- 3. State and Prove Euclid's Lemma.
- 4. Find the highest power of 5 in 80!.
- 5. Find the number of positive integers less than 25200 that are prime to 25200.

SECTION – B

Answer any TWO of the following.

- 6. State and Prove Fundamental theorem of arithmetic.
- 7. If d = (826, 1890) using division algorithm compute d and then express as a linear combination of 826, 1890.
- 8. State and Prove Wilson's theorem.

Max.Time: 2Hours

3x5=15 Marks.

2 - 1

SEMESTER –I

2x10 =20 Marks