

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE

Autonomous

Siddhartha Nagar, Vijayawada–520010 *Re-accredited at 'A+' by the NAAC*

23ELMAL122: Circuit Theory and Electronic Devices

Offered to: B.Sc. Honours (Electronics) Course Type: Major 4 (Core -TH)

Year of Introduction: 2023-24 Year of offering: 2023 - 2024

Semester: II 60 Hrs Credits: 3

Couse Outcomes: At the end of this course, students should be able to:

Course	Outcome	Mapping
Outcome NO		to
CO1	Analyze Passive Networks	PO6
CO2	Analyze Networks Theorems	PO7
CO3	Determine the VI Characteristics of different Diodes	PO3
CO4	Understand functionality of BJT, FET & UJT Devices	PO1
CO5	To understand the concept of power supply	PO2

CO-PO MATRIX										
23ELMAL122	СО-РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
	CO1						2			
	CO2							3		
	CO3			2						
	CO4	2								
	CO5		3							

UNIT- I (10 Hours)

Passive Networks: (D.C)

Resistor, Capacitor, and Inductor, Ohm's Law, Kirchhoff's Law's, series, parallel and series-parallel networks, Branch current method, Mesh Analysis, star to delta & delta to star conversions. (Problems)

UNIT- II (10 Hours)

Networks Theorems: (D.C)

Superposition Theorem, Theorem, Theorem, Norton's Theorem, Maximum Power, and Milliman's theorem (problems).

UNIT- III (10 Hours)

Diodes:

Construction, working, V-I characteristics of P-N junction Diode, Diode current equation—Effect of temperature on reverse saturation current, construction, working, and V-I characteristics of varactor diode, Zener diode, Schottky diode and Tunnel diode.

UNIT- IV (10 Hours)

BJT, FET & UJT:

BJT: Construction, Working, and Characteristics of CE Configurations, Hybrid Parameters and Hybrid Equivalent Circuit of CE Transistor.

FET: Construction, Working and Characteristics of JFET and MOSFET, Advantages of FET over BJT.

UJT: Construction, Working and Characteristics of UJT, UJT as a Relaxation Oscillator.

UNIT-V (10 Hours)

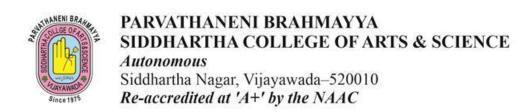
Power Supplies & Photo Electric Devices:

Rectifiers: Half Wave, Full Wave Rectifiers-Efficiency-Ripple Factor.

Filters: L - Section & π -Section Filters, **I.C. Regulators:** 78XX and &79XX.

Light Emitting Diode, Photo diode and LDR.

Text Books:


- 1. Robert L. Boylestad, Introductory Circuit Analysis, UBS Publications), Edition, Publication Year.
- 2. Electronic Devices and Circuit Theory --- Robert L. Boylestad & Louisashelsky.

REFERENCE BOOKS:

- 1. Engineering Circuit Analysis By: Hayt & Kemmerly MG.
- 2. Networks and Systems D.Roy Chowdary
- 3. Unified Electronics (Circuit Analysis and Electronic Devices) by Agarwal-Arora
- 4. Electric Circuit Analysis- S.R. Paranjothi- New Age International.
- 5. Integrated Electronics Millmam & Halkias.
- 6. Electronic Devices & Circuits Bogart.
- 7. Sedha R.S., A Text Book Of Applied Electronics, S.Chand & Company Ltd

Outcomes:-

- 1. Apply concepts of electric network topology, nodes, branches, loops to solve circuit problems including the use of computer simulation.
- 2. Apply time and frequency concepts of analysis.
- 3. .Synthesize the network using passive elements.
- 4. Know about amplifier circuits, switching circuits and oscillator circuits their design and use in electronics.
- 5. Design and construction of a power supply

Model Question Paper

23ELMAL122: Circuit Theory and Electronic Devices

Time: 3 Hours Pass Minimum: 28M

SECTION - A

Answer the following:

 $5 \times 4 = 20 M$

Maximum Marks: 70M

1. (a Explain Kirchoff's Laws.

(Co1-L1)

(Or)

- (b) Deduce the relation for Star to delta. (Co1-L1)
- 2. (a) State and explain maximum transfer theorem. (Co2)-(L1)

(Or)

- (b) State and explain Milliman's theorem.(co2-L1)
- 3. (a) Explain VI Characteristics of Tunnel Diode. (co3- L2)

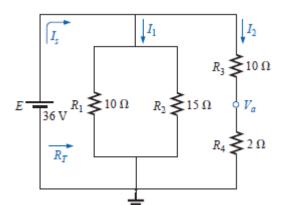
(Or)

- (b) Explain VI Characteristics of Varactor Diode. (Co3-L2)
- 4. (a) Write about how Transistor acts as a switch. (Co4- L2)

(Or)

- (b) Discuss the difference between JFET and MOSFET. (Co4- L2)
- 5. (a) Discuss briefly about photodiode. (co5- L1)

(Or)

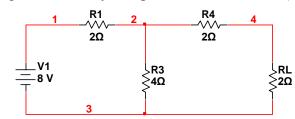

(b) Explain working of Π section filter. (Co5-L1)

Answer the following:

 $5 \times 10 = 50 \text{ M}$

(10M) (CO1-L3)

- 6. (a) For a network
 - a. Determine R_T .
 - b. Find I_s , I_1 , and I_2 .
 - c. Calculate V_a .


(OR)

- (b) Explain the format approach of mesh analysis. (co1- L3) (10) M
- 7. (a) State and prove Norton's Theorem. (co2 –L2)

10M

(OR)

(b) Find the I_L in the given circuit by using Thevenin's theorem (co2 -L2) 10M

8. (a) Explain operation of PN junction in both forward and reverse bias condition and draw its characteristics. (co3- L2) 10M

(OR)

- (b) Explain operation of Zener Diode and draw its characteristics. (co3- L2) 10M
- 9. (a) Explain briefly about input and output characteristics of CE configuration.(Co4 L2) (OR)
 - (b) Explain about the construction and working of FET and explain drain and transfer characteristics of FET .(Co4- L3)
- 10. (a) Define rectifier and explain briefly about half wave rectifier and derive it's efficiency.(Co5 –L2)

(OR)

(b) Explain about 3-terminal voltage IC regulators of positive and negative.(Co5 – L2)
