

PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE Autonomous

Siddhartha Nagar, Vijayawada–520010 *Re-accredited at 'A+' by the NAAC*

Course Code				23PHVAP201					
Title of the Course				Python Programming for Physics					
Offered to: (Programme/s)				B. Sc Ph	ysics (H)				
L	0	Τ	0	Р	2	C	2		
Year of Introduction: 2			2023-24	Semeste	r:		2		
Course Category:			С	Course	Relates to:	GLOBAL			
Year of Revision:				Percentage:					
Type of the Course:				EMPLOYABILITY					
Crosscutting Issues of the Course:				Human Values and Professional Ethics					
Pre-requisites, if any				BASIC KNOWLEDGE					

Course Aims and Objectives:

S. N O	COURSE OBJECTIVES
1	To help students understand the nature of light, its propagation and interaction with matter which is essential to constantly emerging newest technologies.
2	To create interest among the students about modern communication systems by studying wave optics
3	Students will be able to understand applications of interference, diffraction, and lasers in real-life situations.

Course Outcomes

At the end of the course, the student will be able to...

C O N O	COURSE OUTCOME	B T L	P O	P S O
CO 1	Students will be able to install and work with Python, using its built-in functions, data types, and operators to solve computational problems	K 2	1	1
CO 2	Learners will write Python programs using control structures, strings, lists, and tuples, implementing real-world solutions in an efficient manner	K 3	1	1
CO 3	Students will demonstrate proficiency in Python sets, frozen sets, dictionaries, and lambda functions, applying functional programming techniques to complex problems.	K 4	2	1

CO 4	Learners will implement object-oriented programming concepts in Python to create modular, reusable, and efficient code	K 6	1	1
CO 5	Through lab experiments, students will use Python to simulate and calculate physical laws like Newton's Second Law, Coulomb's Law, and Gravitational Force, reinforcing both physics and programming skills.	К 3	2	2

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

CO-PO MATRIX									
CO NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	1							2	
CO2	2							3	
CO3		4						3	
CO4	2							2	
CO5		3							3

Use the codes 3, 2, 1 for High, Moderate and Low correlation Between CO-PO-PSO

respectively

Unit -I

Introduction to Python

Installing Python, Interactive interpreter, Interactive mode, Built-in functions, Python Built-in data types, Numbers, strings and variables, List of operators,

Unit -II

Strings, control structures, Data Structures – Python lists, Data structures – Python tuple

UNIT – III:

Lambda functions, Data structures- set and frozen set, Python dictionary, Collection objects, functions, comprehensions, functional programming, object-oriented programming

<u>Lab list:</u>

- 1. Simple Harmonic Motion: Calculate Displacement
- 2. Projectile Motion: Maximum Height and Range
- 3. Ohm's Law: Calculate Resistance
- 4. Coulomb's Law: Force Between Two Charges
- 5. Newton's Second Law: Calculate Force
- 6. Snell's Law: Calculate the Angle of Refraction
- 7. Planck's Law: Calculate the Energy of a Photon
- 8. Gravitational Force: Between Two Masses

Reference: https://learn.microsoft.com/en-us/training/paths/beginner-python/

Note :

- 1. 6 (Six) experiments are to be done and recorded in the lab. These experiments will be evaluated in CIA.
- 2. For certification minimum of 7 (Seven) experiments must be done and recorded by

student who had put in 75 % of attendance in the lab.

- 3. 15 marks = 15 marks for CIA
- 4. 35 marks for practical exam.

The marks distribution for the Semester End practical examination is as follows:

Formula/ Principle / Statement with explanation of symbols	05
Diagram/Circuit Diagram / Tabular Columns	05
Setting up of the experiment and taking readings/Observations	10
Calculations (explicitly shown) + Graph + Result with Units	05
Procedure and precautions	05
Viva-voce	05
Total Marks:	35