

#### PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE Autonomous

Siddhartha Nagar, Vijayawada–520010 *Re-accredited at 'A+' by the NAAC* 

| Course Code                         |   |                    |                                | 23CHMIL231                        |  |  |   |  |
|-------------------------------------|---|--------------------|--------------------------------|-----------------------------------|--|--|---|--|
| Title of the Course                 |   |                    |                                | FUNDAMENTALS IN ORGANIC CHEMISTRY |  |  |   |  |
| Offered to: (Programme/s)           |   |                    | B.Sc. Hons Botany & Zoology    |                                   |  |  |   |  |
| L                                   | 4 | Т                  | 0                              | P 0 C 3                           |  |  | 3 |  |
| Year of Introduction: 2024-25       |   |                    | Semester: 3                    |                                   |  |  |   |  |
| Course Category: MINOR              |   | Course Relates to: |                                | GLOBAL                            |  |  |   |  |
| Year of Revision: 2024              |   | Percentage:        |                                | NA                                |  |  |   |  |
| Type of the Course:                 |   |                    | Employability                  |                                   |  |  |   |  |
| Crosscutting Issues of the Course : |   |                    | Environment and Sustainability |                                   |  |  |   |  |
| Pre-requisites, if any              |   |                    | 23CHMIL121                     |                                   |  |  |   |  |

#### **Course Description:**

Organic chemistry primarily deals with the structure, properties, composition, reactions, and synthesis of carbon-based compounds. While carbon can form compounds with many elements, organic chemistry traditionally focuses on compounds containing carbon and hydrogen, and may also include elements like oxygen, nitrogen, sulfur, phosphorus, and halogens. Organic chemistry is a vast and dynamic field that underpins many aspects of science and industry, including pharmaceuticals, petrochemicals, polymers, and more. Mastery of its fundamentals provides a solid foundation for further study and application in various scientific and practical contexts.

#### **Course Aims and Objectives:**

| S.NO | COURSE OBJECTIVES                                                                                                                                                                                                                |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Studying structural theory in organic chemistry aim is to provide students with a deep<br>understanding of how the structure of organic molecules influences their properties,<br>reactivity, and behavior.                      |
| 2    | Comprehensive understanding of alkanes and cycloalkanes, focusing on their structures, properties, reactions, and real-world applications.                                                                                       |
| 3    | Understanding of alkenes and alkynes, focusing on their structures, physical and chemical properties, reactions, and applications.                                                                                               |
| 4    | Comprehensive understanding of benzene and its reactivity, focusing on its structure, properties, reactions, and applications.                                                                                                   |
| 5    | Thorough understanding of the orientation of aromatic substitution, focusing on how different substituent's influence the reactivity and regioselectivity of the aromatic ring in electrophilic aromatic substitution reactions. |

#### **Course Outcomes**

At the end of the course, the student will be able to...

| CO<br>NO | COURSE OUTCOME                                                                                                            | BTL | РО  | PSO  |
|----------|---------------------------------------------------------------------------------------------------------------------------|-----|-----|------|
| CO1      | Remember the structure of organic molecules influences their properties, reactivity, and behavior.                        | K1  | PO2 | PSO2 |
| CO2      | Remember alkenes and alkynes, focusing on their structures, physical and chemical properties, reactions, and applications | K1  | PO2 | PSO2 |
| CO3      | Understand chemical reactions ,alkanes ,alkens, alkynes, bezene<br>and its orientation of aromatic substitution           | K2  | PO2 | PSO1 |
| CO4      | Understand different substituent's influence the reactivity and regioselectivity of the aromatic ring.                    | K2  | PO7 | PSO1 |
| CO5      | Apply fundamental chemical reactions on different compounds in organic chemistry                                          | K3  | PO1 | PSO3 |

For BTL: K1: Remember; K2: Understand; K3: Apply; K4: Analyze; K5: Evaluate; K6: Create

| CO-PO MATRIX |     |     |     |     |     |     |            |      |      |      |
|--------------|-----|-----|-----|-----|-----|-----|------------|------|------|------|
| CO NO        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PSO1 | PSO2 | PSO3 |
| CO1          |     | 2   |     |     |     |     |            |      | 1    |      |
| CO2          |     | 2   |     |     |     |     |            |      | 2    |      |
| CO3          |     | 1   |     |     |     |     |            | 2    |      |      |
| CO4          |     |     |     |     |     |     | 1          | 2    |      |      |
| CO5          | 2   |     |     |     |     |     |            |      |      | 3    |

Use the codes 3,2,1 for High, Moderate and Low correlation Between CO-PO-PSO respectively

### **SYLLABUS**

#### Unit 1. Structural theory in Organic Chemistry

Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radical reagents). Reaction intermediates – Carbocations, carbanions & free radicals. Bond polarization: Factors influencing the polarization of covalent bonds, inductive effect - Application of inductive effect (a) Basicity of amines (b) Acidity of carboxylic acids (c) Stability of carbonium ions. Resonance or Mesomeric effect, application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes.

## Unit II Saturated Hydrocarbons (Alkanes and Cycloalkanes) (9 h) General methods of preparation of alkanes- Wurtz and Wurtz Fittig reaction, Corey House

synthesis, physical and chemical properties of alkanes, Conformational analysis of alkanes

(9 h)

(Conformations, relative stability and energy diagrams of Ethane, Propane and butane). General molecular formulae of cycloalkanes and relative stability, Baeyer strain theory, Cyclohexane conformations with energy diagram, Conformations of mono substituted cyclohexane.

#### UNIT-III Unsaturated Hydrocarbons (Alkenes and Alkynes)

General methods of preparation, physical and chemical properties, Saytzeff and Hoffmann eliminations (with mechanism), Electrophilic Additions, (H2, HX) mechanism (Markownikoff/ Antimarkownikoff addition) with suitable examples-syn and anti-addition; addition of X2, HX. Oxymercuration demercuration, ozonolysis, hydroxylation, Diels Alder reaction, 1,2- and1,4addition reactions in conjugated dienes. Reactions of alkynes; acidity, electrophilic and nucleophilic additions, hydration to form carbonyl compounds, Alkylationof terminal alkynes.

UNIT-IV Benzene and its reactivity (9 h) Concept of aromaticity, Huckel's rule - application to Benzenoid (Benzene, Naphthalene) and Non - Benzenoid compounds (cyclopropenylcation, cyclopentadienyl anion and tropylium cation)

Structure of Benzene – Preparation - polymerisation of acetylene and decarboxylation-Properties -mechanism of electrophilic aromatic substitution of Friedel- Craft's alkylation and acylation. halogenation and nitration,

#### **UNIT-V Orientation of aromatic substitution**

Orientation of aromatic substitution - ortho, para and meta directing groups. Ring activating and deactivating groups with examples (Electronic interpretation of various groups like NO2 and Phenolic). Orientation of (i) Amino, methoxy and methyl groups (ii) Carboxy, nitro, nitrile, carbonyl and sulphonic acid groups (iii) Halogens.

#### II. List of Reference Books

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 3. Guide book to Mechanism in Organic Chemistry by Peter Sykes 6<sup>th</sup> edition,1985.

(9h)

(9 h)

#### **References-weblinks**

- 1. <u>https://chem.libretexts.org/Bookshelves/Organic\_Chemistry/Basic\_Principles\_of\_Organic\_Chemistry\_(Roberts\_and\_Caserio)/02%3A\_Structural\_Organic\_Chemistry</u>
- 2. <u>https://chem.libretexts.org/Bookshelves/General\_Chemistry/Map%3A\_Chemistry\_(Zum\_dahl\_and\_Decoste)/21%3A\_Organic\_and\_Biological\_Chemistry/21.1%3A\_Alkanes%3A\_Saturated\_Hydrocarbons</u>
- 3. <u>http://www.chem.latech.edu/~deddy/chem121/Alkene\_Alkyne\_Aromatic.htm</u>
- 4. https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/benzrx2.htm
- 5. <u>https://chem.libretexts.org/Bookshelves/Organic\_Chemistry/Basic\_Principles\_of\_Organic\_Chemistry\_(Roberts\_and\_Caserio)/22%3A\_Arenes\_Electrophilic\_Aromatic\_Substitution/22.05%3A\_Effect\_of\_Substituent</u>



## PARVATHANENI BRAHMAYYA SIDDHARTHA COLLEGE OF ARTS & SCIENCE

Autonomous Siddhartha Nagar, Vijayawada–520010 Re-accredited at 'A+' by the NAAC

## **SEMESTER -END QUESTION PAPER**

| Course Code & Title of the Course: | 23CHMIL231<br>FUNDAMENTALS IN ORGANIC CHEMISTRY |  |  |  |
|------------------------------------|-------------------------------------------------|--|--|--|
| Offered to:                        | B.Sc. Hons Botany & Zoology                     |  |  |  |
| Category:                          | SEMESTER: III                                   |  |  |  |
| Max. Marks                         | 70                                              |  |  |  |
| Max.Time                           | 3 Hrs                                           |  |  |  |

# Section A: Short Answer Questions (20 Marks)

## Answer all questions. Each question carries 4 Marks.

| Q1         | (a) Explain generation and any two reactions of Carbanion.                            | K2  |
|------------|---------------------------------------------------------------------------------------|-----|
|            | OR                                                                                    |     |
|            | (b) Describe different Types of bond fissions.                                        | K2  |
| Q2         | (a) Outline the Conformations, relative stability and energy diagrams of Ethane<br>OR | K1  |
|            | (b) List the methods of preparation of alkanes.                                       | K1  |
|            |                                                                                       |     |
| Q3         | (A) Describe Diels alder reaction                                                     | K2  |
|            | OR                                                                                    |     |
|            | (b) Explain the acidity of alkynes.                                                   | K2  |
|            |                                                                                       |     |
| Q4         | (a) Explain the aromaticity of benzenoid compounds with two examples.                 | K2  |
|            | OR                                                                                    |     |
|            | (b) Explain the methods for preparation of benzene                                    | K2  |
|            |                                                                                       |     |
| Q5         | (a) Illustrate meta directing groups.                                                 | K3  |
| <b>C</b> - | OR                                                                                    |     |
|            | (b) Illustrate Ring activating and deactivating groups .                              | K3  |
|            | (b) musture rung untrunning and dedetivating groups.                                  | 113 |

|      | Section B: Long Answer Questions (50 Marks)                                                                                         |              |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| Ansv | wer all questions. Each question carries 10 Marks.                                                                                  |              |  |  |  |  |
| Q6   | (a) Describe mesomeric effect and its application in acidity of phenol and acid<br>carboxylic acids                                 |              |  |  |  |  |
|      | OR                                                                                                                                  |              |  |  |  |  |
|      | <ul><li>(b) Explain Hyper conjugation and its application to stability of carbonium ions, Free ra and alkenes.</li><li>K2</li></ul> |              |  |  |  |  |
| Q7   | (a) Discuss Conformations, relative stability and energy diagrams of Propane and but<br>OR                                          | ane K2       |  |  |  |  |
|      | (b) Explain the following                                                                                                           |              |  |  |  |  |
|      | i) Baeyer strain theory ii) Conformations of mono substituted cyclohexane.                                                          | K2           |  |  |  |  |
| Q8   | (a) Interpret Markownikoff and Antimarkownikoff rules addition reactions with suitabl examples                                      | le<br>K3     |  |  |  |  |
|      | OR                                                                                                                                  |              |  |  |  |  |
|      | (b) Apply Saytzeff and Hoffmann eliminations reactions with mechanism for preparati alkenes.                                        | ion of<br>K3 |  |  |  |  |
| Q9   | (a) Discuss Concept of aromaticity and explain aromaticity of non benzenoid compoun                                                 | de with      |  |  |  |  |
| Q)   | suitable examples                                                                                                                   | K2           |  |  |  |  |
|      | OR                                                                                                                                  |              |  |  |  |  |
|      | (b) Explain the mechanism of Friedel- Craft's alkylation and acylation. halogenat                                                   | ion and      |  |  |  |  |
|      | nitration reactons on benzene                                                                                                       | K2           |  |  |  |  |
| Q10  | (a) Interpret the ortho and para diierecting groups.                                                                                | K3           |  |  |  |  |
|      | OR                                                                                                                                  |              |  |  |  |  |
|      | (b) Explain orentation of Carboxy, nitro, nitrile, carbonyl and sulphonic acid group of                                             | on           |  |  |  |  |

benzene ring K2